在16卡服务器上使用最新版的CUDA和驱动训练`llama - 2 - 7b`和`llama - 2 - 70b`模型,并生成训练指标数据
要在16卡服务器上使用最新版的CUDA和驱动训练llama - 2 - 7b
和llama - 2 - 70b
模型,并生成训练指标数据,你可以按照以下步骤进行:
1. 环境准备
确保你的服务器已经安装了最新版的CUDA和驱动,并且安装了必要的Python库,如torch
、transformers
、datasets
等。可以使用以下命令安装:
pip install torch transformers datasets accelerate deepspeed
2. 代码实现
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
default_data_collator
)
from datasets import load_dataset
import time
# 定义模型名称
model_names = ["meta-llama/Llama-2-7b-hf", "meta-llama/Llama-2-70b-hf"]
# 加载数据集
dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
for model_name in model_names:
print(f"Training {model_name}...")
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
# 预处理数据集
def preprocess_function(examples):
inputs = tokenizer(examples["text"], truncation=True, max_length=512, padding="max_length")
return inputs
tokenized_dataset = dataset.map(preprocess_function, batched=True)
# 定义训练参数
training_args = TrainingArguments(
output_dir=f"./results/{model_name}",
num_train_epochs=1,
per_device_train_batch_size=4,
gradient_accumulation_steps=1,
fp16=True,
logging_steps=10,
save_steps=1000,
evaluation_strategy="steps",
eval_steps=500,
warmup_steps=500,
weight_decay=0.01,
logging_dir=f"./logs/{model_name}",
deepspeed="ds_config.json" # 使用DeepSpeed进行分布式训练
)
# 定义Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["validation"],
data_collator=default_data_collator,
)
# 开始训练并记录时间
start_time = time.time()
trainer.train()
end_time = time.time()
# 计算训练指标
total_steps = trainer.state.global_step
total_time = end_time - start_time
throughput = total_steps / total_time
print(f"Model: {model_name}")
print(f"Total steps: {total_steps}")
print(f"Total time (s): {total_time}")
print(f"Throughput (steps/s): {throughput}")
3. DeepSpeed配置文件(ds_config.json
)
{
"train_batch_size": 64,
"optimizer": {
"type": "Adam",
"params": {
"lr": 0.0001,
"betas": [
0.9,
0.999
],
"eps": 1e-8,
"weight_decay": 0.01
}
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"initial_scale_power": 16
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
}
}
4. 运行代码
将上述代码保存为train_llama.py
,并在终端中运行:
deepspeed --num_gpus 16 train_llama.py
注意事项
- 模型权限:
Llama - 2
系列模型需要在Hugging Face上申请访问权限,确保你已经获得了相应的权限。 - 硬件资源:
llama - 2 - 70b
模型非常大,需要足够的显存和内存资源。确保你的服务器能够支持该模型的训练。 - 数据处理:这里使用的是
wikitext - 2 - raw - v1
数据集,你可以根据需要替换为自己的数据集。