当前位置: 首页 > article >正文

e2studio开发RA4M2(15)----配置RTC时钟及显示时间

e2studio开发RA4M2.15--配置RTC时钟及显示时间

  • 概述
  • 视频教学
  • 样品申请
  • 硬件准备
  • 参考程序
  • 源码下载
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • SWD调试口设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_SCI_UART_Open()函数原型
  • 回调函数user_uart_callback ()
  • printf输出重定向到串口
  • RTC配置
  • RTC属性配置
  • 设定时间
  • 设定周期性中断
  • 设定日历闹钟时间
  • 回调函数
  • R_RTC_Open函数
  • 演示效果

概述

本文将详细讲解如何借助e2studio来对瑞萨微控制器进行实时时钟(RTC)的设置和配置,以便实现日历功能和一秒钟产生的中断,从而通过串口输出实时数据。
实时时钟(RTC)模块是一种时间管理外设,主要用于记录和控制日期和时间。与常见的微控制器(MCU)中的定时器不同,RTC时钟提供了两种计时方式:日期模式和计时模式。RTC时钟的常用功能包括设置时间、设定闹钟、配置周期性中断以及启动或停止操作。
通过使用e2studio工具,我们可以轻松地对瑞萨微控制器进行RTC配置,从而实现高精度的时间和日期管理。在本文中,我们将重点讨论如何设置RTC时钟日历和产生一秒钟的中断,使得串口能够实时打印数据。

最近在瑞萨RA的课程,需要样片的可以加qun申请:925643491。

在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1dDXQY5E57/

e2studio开发RA4M2(15)----配置RTC时钟及显示时间

样品申请

https://www.wjx.top/vm/rCrkUrz.aspx

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。
主控为R7FA4M2AD3CFL#AA0
在这里插入图片描述

参考程序

https://github.com/CoreMaker-lab/RA4M2

https://gitee.com/CoreMaker/RA4M2

源码下载

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA4M2AD3CFL#AA0来进行演示。

在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述

需要修改XTAL为12M。

在这里插入图片描述

SWD调试口设置

在这里插入图片描述

UART配置

在这里插入图片描述

点击Stacks->New Stack->Connectivity -> UART(r_sci_uart)。

在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述

在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。

在这里插入图片描述

R_SCI_UART_Open()函数原型

在这里插入图片描述

故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。

    /* Open the transfer instance with initial configuration. */
    err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
    assert(FSP_SUCCESS == err);
    printf("hello world!\n");

回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述

在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    
#endif


PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}

int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}

RTC配置

点击Stacks->New Stack->Timers -> Realtime Clock(r_rtc_c)。

在这里插入图片描述

RTC属性配置

在这里插入图片描述

其中LOCO为内部低速时钟,需要准确定时还是需要外部低速晶振Sub-clock。

在这里插入图片描述

在这里插入图片描述

内部低速晶振的偏差过大,不如外置低速晶振。

在这里插入图片描述

设定时间

在启动RTC后,需要为其设定当前时间。您可以使用R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);函数来实现这一目标。具体的时间参数可以通过修改set_time变量来调整。

在这里插入图片描述

//RTC变量
/* rtc_time_t is an alias for the C Standard time.h struct 'tm' */
rtc_time_t set_time =
{
    .tm_sec  = 50,      /* 秒,范围从 0 到 59 */
    .tm_min  = 59,      /* 分,范围从 0 到 59 */
    .tm_hour = 23,      /* 小时,范围从 0 到 23*/
    .tm_mday = 28,      /* 一月中的第几天,范围从 1 到 31*/
    .tm_mon  = 1,       /* 月份,范围从 0 到 11*/
    .tm_year = 125,     /* 自 1900 起的年数,2025为125*/
    .tm_wday = 5,       /* 一周中的第几天,范围从 0 到 6*/
//    .tm_yday=0,       /* 一年中的第几天,范围从 0 到 365*/
//    .tm_isdst=0;      /* 夏令时*/
};

设定周期性中断

如果您想要使用RTC实现固定延迟中断,可以通过R_RTC_PeriodicIrqRateSet函数来实现。例如,要设置1秒的周期性中断,您可以使用如下代码:
R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);
每次周期性中断产生时,系统将触发回调函数的事件RTC_EVENT_PERIODIC_IRQ。

在这里插入图片描述

设定日历闹钟时间

在启动RTC后,您可以设置日历闹钟时间。通过使用R_RTC_CalendarAlarmSet(&g_rtc0_ctrl, &set_alarm_time);函数,可以设定闹钟时间。具体的时间参数可以通过修改set_alarm_time变量来调整。具体设置方法如下。
在这个示例中,我们仅设置了0点0分进行闹钟触发,而且只在周三触发。

//RTC闹钟变量
rtc_alarm_time_t set_alarm_time=
{
     .time.tm_sec  = 10,      /* 秒,范围从 0 到 59 */
     .time.tm_min  = 30,      /* 分,范围从 0 到 59 */
     .time.tm_hour = 12,      /* 小时,范围从 0 到 23*/
     .time.tm_mday = 1,       /* 一月中的第几天,范围从 1 到 31*/
     .time.tm_mon  = 2,       /* 月份,范围从 0 到 11*/
     .time.tm_year = 125,     /* 自 1900 起的年数,2025为125*/
     .time.tm_wday = 6,       /* 一周中的第几天,范围从 0 到 6*/

     .sec_match        =  1,
     .min_match        =  0,
     .hour_match       =  0,
     .mday_match       =  0,
     .mon_match        =  0,
     .year_match       =  0,
     .dayofweek_match  =  0,
    };

在这里插入图片描述

回调函数

可以触发进入回调函数的事件如下所示,RTC_EVENT_PERIODIC_IRQ为设置的实时性事件,例如1s一次,RTC_EVENT_ALARM_IRQ为闹钟事件。

在这里插入图片描述

//RTC回调函数
volatile bool rtc_flag = 0;//RTC延时1s标志位
volatile bool rtc_alarm_flag = 0;//RTC闹钟
/* Callback function */
void rtc_callback(rtc_callback_args_t *p_args)
{
    /* TODO: add your own code here */
    if(p_args->event == RTC_EVENT_PERIODIC_IRQ)
        rtc_flag=1;
    else if(p_args->event == RTC_EVENT_ALARM_IRQ)
        rtc_alarm_flag=1;
}

R_RTC_Open函数

R_RTC_Open函数可以开启RTC。

在这里插入图片描述

同时在主程序中开启RTC已经设置时间和闹钟。

    /**********************RTC开启***************************************/
    /* Initialize the RTC module*/
    err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

    /* Handle any errors. This function should be defined by the user. */
    assert(FSP_SUCCESS == err);

    /* Set the RTC clock source. Can be skipped if "Set Source Clock in Open" property is enabled. */
    R_RTC_ClockSourceSet(&g_rtc0_ctrl);
    /* R_RTC_CalendarTimeSet must be called at least once to start the RTC */
    R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);
    /* Set the periodic interrupt rate to 1 second */
    R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

    R_RTC_CalendarAlarmSet(&g_rtc0_ctrl, &set_alarm_time);
    uint8_t rtc_second= 0;      //秒
    uint8_t rtc_minute =0;      //分
    uint8_t rtc_hour =0;         //时
    uint8_t rtc_day =0;          //日
    uint8_t rtc_month =0;      //月
    uint16_t rtc_year =0;        //年
    uint8_t rtc_week =0;        //周
    rtc_time_t get_time;

同时在主函数的while循环中添加打印和中断处理,以及当前时间显示。

    while(1)
    {
        if(rtc_flag)
        {
            R_RTC_CalendarTimeGet(&g_rtc0_ctrl, &get_time);//获取RTC计数时间
            rtc_flag=0;
            rtc_second=get_time.tm_sec;//秒
            rtc_minute=get_time.tm_min;//分
            rtc_hour=get_time.tm_hour;//时
            rtc_day=get_time.tm_mday;//日
            rtc_month=get_time.tm_mon;//月
            rtc_year=get_time.tm_year; //年
            rtc_week=get_time.tm_wday;//周
            printf(" %d y %d m %d d %d h %d m %d s %d w\n",rtc_year+1900,rtc_month+1,rtc_day,rtc_hour,rtc_minute,rtc_second,rtc_week);


            }
        if(rtc_alarm_flag)
        {
            rtc_alarm_flag=0;
            printf("/************************Alarm Clock********************************/\n");
            }
        R_BSP_SoftwareDelay(10U, BSP_DELAY_UNITS_MILLISECONDS);
        }

演示效果

设置2月28日,当过了凌晨0点后自动切换为3月1号显示。

在这里插入图片描述

设置每过1s打印一次当前时间,设置过1分钟,在10s时候闹铃。

在这里插入图片描述


http://www.kler.cn/a/576166.html

相关文章:

  • STM32G431RBT6--(3)片上外设及其关系
  • STM32_IIC外设工作流程
  • nature genetics | SCENT:单细胞多模态数据揭示组织特异性增强子基因图谱,并可识别致病等位基因
  • 监听-追溯
  • 光路科技将携最新TSN交换机亮相高速展,展示智慧交通创新解决方案
  • AI 实战 - pytorch框架基于retinaface实现face检测
  • 游戏引擎学习第143天
  • Nginx多服务器转发接口数据,实现单接口多服务器处理数据,达到数据共享
  • 【微信小程序】uniapp开发微信小程序
  • 网络安全区划分
  • 使用PHP实现微服务架构:挑战与解决方案
  • SQL-labs13-16闯关记录
  • Docker Desktop常见问题记录
  • 微信小程序+SpringBoot的单词学习小程序平台(程序+论文+讲解+安装+修改+售后)
  • 【计算机网络】计算机网络的性能指标——时延、时延带宽积、往返时延、信道利用率
  • Java 面试篇-SSM 框架专题(什么是 AOP?Spring 中事务时如何实现的?事务失效的场景?Spring 中循环引用怎么解决?Springboot 的自动配置原理?Spring 常见注解?)
  • BFS(八)515. 在每个树行中找最大值 中等
  • OpenCV计算摄影学(14)实现对比度保留去色(Contrast Preserving Decolorization)的函数decolor()
  • SpringBoot知识点及其源码解析(1)
  • 发行基础:热销商品榜单