安装CUDA12.1和torch2.2.1下的DKG
1.创建python虚拟环境
set NO_PROXY=*
conda deactivate
conda env remove -n findkg
conda create -n findkg python=3.11
conda activate findkg
conda install packaging setuptools
pip uninstall numpy
conda install numpy=1.24.3
请注意,DKG需要python>=3.11,一定要注意
2.下载cuda
https://developer.nvidia.com/cuda-12-1-0-download-archive
3.下载pytorch等安装包
conda install pytorch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 pytorch-cuda=12.1 -c pytorch -c nvidia
https://pytorch.org/get-started/previous-versions/
pip install torchdata
conda install -c dglteam/label/cu121 dgl
conda install pandas
4.检验是否成功
import dgl
import torch
# 检查 DGL 和 CUDA 版本
print(f'DGL version: {dgl.__version__}')
print(f'CUDA available: {torch.cuda.is_available()}')
print(f'CUDA version: {torch.version.cuda}')
# 创建一个简单的图,并检查是否可以使用 CUDA
u = torch.tensor([0, 1, 2])
v = torch.tensor([1, 2, 3])
g = dgl.graph((u, v))
# 将图移到 GPU 上
g = g.to('cuda')
print(g)
CUDA Toolkit版本及可用PyTorch对应关系
5.安装DKG
5.安装DKG
- 在DKG目录下创建完整的setup.py:
from setuptools import setup, find_packages
setup(
name="DKG",
version="0.0.8",
packages=find_packages(),
install_requires=[
"torch",
"dgl",
"numpy==1.24.3",
"pandas",
"scikit-learn",
"tqdm"
],
package_data={
'DKG': ['*.*'],
},
)
2.安装
pip install -e DKG
python -c "import DKG; print(DKG.__version__)"