从零开始学机器学习——逻辑回归
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns
在之前的学习中,我们学习了直线线性回归与多项式回归,我们今天的主题则是逻辑回归,我记得在前面有讲解过这两个回归的区别,那么今天我们主要看下逻辑回归有哪些特征需要我们识别的。
逻辑回归
逻辑回归主要用于解决二元分类问题,帮助我们预测某个事件是否会发生,例如判断某种糖果是否为巧克力、某种疾病是否具有传染性,或者某位顾客是否会选择特定的产品,使我们能够将复杂的数据转化为简单的“是”或“否”的结果,适用于许多实际场景。这种通常是逻辑回归解决的问题。
与线性回归不同,逻辑回归专注于预测二元分类结果,而线性回归则旨在预测连续值。例如,在线性回归中,我们可以根据南瓜的起源、收获时间以及其他相关特征来预测其价格可能上涨的幅度。然而,这个预测并不是绝对确定的,因为它依赖于历史数据的趋势和模式。通过分析过往的价格变动及其影响因素,线性回归能够提供一个合理的估计值
其他分类
当然,除了二元分类问题,逻辑回归还可以扩展到多元分类问题。在多元分类中,目标变量可以有多个可能的固定答案,而每个答案都是明确的、可识别的正确选项。
除了多元分类之外,还有一种特别的分类问题称为有序分类问题。在有序分类中,我们不