当前位置: 首页 > article >正文

深度学习与普通神经网络有何区别?

深度学习与普通神经网络的主要区别体现在以下几个方面:

一、结构复杂度

  • 普通神经网络:通常指浅层结构,层数较少,一般为2-3层,包括输入层、一个或多个隐藏层、输出层。
  • 深度学习:强调通过5层以上的深度架构逐级抽象数据特征,包含多层神经网络,层数可能达到几十层甚至上百层。例如,ResNet(2015)包含152个卷积层。

二、特征学习方式

  • 普通神经网络:特征提取通常依赖人工设计,需要领域专家的经验。这意味着在处理新任务时,可能需要重新设计特征提取器。
  • 深度学习:具备自动特征提取能力。通过卷积核(CNN)、注意力机制(Transformer)等组件,模型能够自动从数据中学习并提取高级特征。这种方式减少了特征工程的工作量,提高了模型的泛化能力。

三、训练方式

  • 普通神经网络:通常采用反向传播算法进行训练,但由于层数较少,训练过程中较少出现梯度消失或梯度爆炸等问题。
  • 深度学习:虽然也使用反向传播算法,但由于层数较多,容易出现梯度消失或梯度爆炸等问题。为了克服这些问题,深度学习引入了逐层预训练(layer-wise pre-training)、批量归一化(Batch Normalization)、残差连接(Residual Connections)等技术,使得深层网络的训练成为可能。

四、应用场景与性能

  • 普通神经网络:适用于小规模结构化数据的处理,如信用卡欺诈检测等任务。虽然在这些任务上也能取得一定的效果,但性能可能不如深度学习模型。
  • 深度学习:在非结构化数据处理中表现突出,如医疗影像诊断(肺结节检测灵敏度达97%)、自动驾驶场景理解(目标检测精度99.5%)、机器翻译(BLEU评分超40)等领域。此外,大规模预训练模型如GPT-4(1.8万亿参数)还展现出跨任务迁移能力,能够在多个任务上取得优异的表现。

五、模型复杂度与计算资源

  • 普通神经网络:由于结构相对简单,所需的计算资源较少,训练时间也相对较短。
  • 深度学习:由于结构复杂,层数较多,所需的计算资源(如GPU、TPU等)和训练时间也显著增加。然而,随着硬件技术的不断进步和算法的优化,深度学习模型的训练效率也在不断提高。

概括而言,深度学习与普通神经网络的主要区别在于结构复杂度、特征学习方式、训练方式、应用场景与性能以及模型复杂度与计算资源等方面。深度学习通过构建更深的网络结构、自动提取特征、采用先进的训练技术和优化算法,在多个领域取得了显著优于普通神经网络的表现。


http://www.kler.cn/a/579401.html

相关文章:

  • Ai大模型day02神经网络+深度学习
  • Agentic系统:负载均衡与Redis缓存优化
  • 刷题记录(LeetCode738 单调递增的数字)
  • Web3 的隐私保护机制:如何保障个人数据安全
  • Redis渐进式遍历数据库
  • rpc和proto
  • 【YOLOv12改进trick】多尺度大核注意力机制MLKA模块引入YOLOv12,实现多尺度目标检测涨点,含创新点Python代码,方便发论文
  • 手写Tomcat:实现基本功能
  • CTFHub-FastCGI协议/Redis协议
  • 行式数据库与列式数据库区别
  • 【渗透测试】基于时间的盲注(Time-Based Blind SQL Injection)
  • elasticsearch是哪家的
  • 物联网中如何解决网络复杂性的问题
  • 爬虫去重:数据采集时如何进行去重,及去重优化策略
  • 2025最新Postman、Apipost和Apifox API 协议与工具选择方案解析
  • PG vs MySQL 主从复制的异同点
  • hom_mat2d_to_affine_par 的c#实现
  • hadoop集群HDFS读写性能测试
  • 使用mergekit合并大型语言模型
  • 使用chroot预安装软件到ubuntu22中