当前位置: 首页 > article >正文

Docker 运行 GPUStack 的详细教程

GPUStack

GPUStack 是一个用于运行 AI 模型的开源 GPU 集群管理器。它具有广泛的硬件兼容性,支持多种品牌的 GPU,并能在 Apple MacBook、Windows PC 和 Linux 服务器上运行。GPUStack 支持各种 AI 模型,包括大型语言模型(LLMs)、扩散模型、音频模型、嵌入模型和重新排序模型。GPUStack 可以轻松扩展,只需添加更多 GPU 或节点即可扩展操作。它支持单节点多 GPU 和多节点推理和服务,并提供多种推理后端,如 llama-boxvox-boxvLLM。GPUStack 是一个轻量级的 Python 包,具有最小的依赖项和操作开销,并且提供与 OpenAI 标准兼容的 API。此外,它还简化了用户和 API 密钥的管理,提供了 GPU 性能和利用率的实时监控,以及令牌使用和速率限制的有效跟踪。

关键特性

  • 广泛的硬件兼容性:支持管理 Apple Mac、Windows PC 和 Linux 服务器上不同品牌的 GPU。
  • 广泛的模型支持:支持从大语言模型(LLMs)、多模态模型(VLMs)、扩散模型、语音模型到嵌入和重新排序模型的广泛模型。
  • 异构 GPU 支持与扩展:能够轻松添加异构 GPU 资源,并按需扩展算力规模。
  • 分布式推理:支持单机多卡并行和多机多卡并行推理。
  • 多推理后端支持:支持 llama-box(基于 llama.cpp 和 stable-diffusion.cpp)、vox-boxvLLM 作为推理后端。
  • 轻量级 Python 包:最小的依赖和操作开销。
  • OpenAI 兼容 API:提供兼容 OpenAI 标准的 API 服务。
  • 用户和 API 密钥管理:简化用户和 API 密钥的管理流程。
  • GPU 指标监控:实时监控 GPU 性能和利用率。
  • Token 使用和速率统计:有效跟踪 token 使用情况,并管理速率限制。

支持的硬件平台

  • Apple Metal(M 系列芯片)
  • NVIDIA CUDA(计算能力 6.0 及以上)
  • AMD ROCm
  • 华为昇腾(CANN)
  • 摩尔线程(MUSA)
  • 海光 DTK

支持的模型类型

  • 大语言模型(LLMs):如 Qwen、LLaMA、Mistral、Deepseek、Phi、Yi 等。
  • 多模态模型(VLMs):如 Llama3.2-Vision、Pixtral、Qwen2-VL、LLaVA、InternVL2.5 等。
  • 扩散模型:如 Stable Diffusion、FLUX 等。
  • 嵌入模型:如 BGE、BCE、Jina 等。
  • 重新排序模型:如 BGE、BCE、Jina 等。
  • 语音模型:如 Whisper(语音转文本)、CosyVoice(文本转语音)等。

使用场景

GPUStack 适用于需要高效管理和调度 GPU 资源的场景,特别是在运行 AI 模型时。它支持单节点多 GPU 和多节点推理及服务,并提供多种推理后端,如 llama-boxvox-boxvLLM。GPUStack 是一个轻量级的 Python 包,具有最小的依赖项和操作开销,并且提供与 OpenAI 标准兼容的 API。此外,它还简化了用户和 API 密钥的管理,提供了 GPU 性能和利用率的实时监控,以及令牌使用和速率限制的有效跟踪。

Docker 运行 GPUStack 的详细教程

https://docs.gpustack.ai/latest/installation/docker-installation/

以下是使用 Docker 运行 GPUStack 的详细教程,结合官方文档与社区实践整理而成。通过本指南,您可以在支持 NVIDIA GPU 的 Linux 环境中快速部署 GPUStack,并实现异构 GPU 集群的管理与大模型服务。


在这里插入图片描述
在这里插入图片描述

一、环境准备

  1. 硬件与系统要求

    • 确保系统已安装 NVIDIA GPU,并验证驱动兼容性(支持 CUDA 11.0 及以上版本)。
    • 推荐使用 Ubuntu 22.04 LTS 或 CentOS 7+ 系统。
  2. 验证 GPU 与依赖项

    # 检查 NVIDIA GPU 是否识别
    lspci | grep -i nvidia
    
    root@i-28e6iose:/home/ubuntu# lspci | grep -i nvidia
    00:0c.0 VGA compatible controller: NVIDIA Corporation TU102 [GeForce RTX 2080 Ti] (rev a1)
    00:0d.0 Audio device: NVIDIA Corporation TU102 High Definition Audio Controller (rev a1)
    
    # 确认 GCC 已安装
    gcc --version
    
    root@i-28e6iose:/home/ubuntu# gcc --version
    gcc (Ubuntu 9.5.0-6ubuntu2) 9.5.0
    Copyright (C) 2019 Free Software Foundation, Inc.
    This is free software; see the source for copying conditions.  There is NO
    warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
    

二、安装 NVIDIA 驱动与 Docker

  1. 安装 NVIDIA 驱动

    # 安装内核头文件
    sudo apt-get install linux-headers-$(uname -r)
    # 添加 CUDA 仓库并安装驱动
    wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
    sudo dpkg -i cuda-keyring_1.1-1_all.deb
    sudo apt-get update
    sudo apt-get install nvidia-driver-535 -y
    sudo reboot
    # 验证驱动
    nvidia-smi
    
    
    root@i-28e6iose:/home/ubuntu# nvidia-smi
    Sun Mar  9 20:48:43 2025
    +-----------------------------------------------------------------------------------------+
    | NVIDIA-SMI 570.124.06             Driver Version: 570.124.06     CUDA Version: 12.8     |
    |-----------------------------------------+------------------------+----------------------+
    | GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
    |                                         |                        |               MIG M. |
    |=========================================+========================+======================|
    |   0  NVIDIA GeForce RTX 2080 Ti     Off |   00000000:00:0C.0 Off |                  N/A |
    | 22%   29C    P8             20W /  250W |       4MiB /  11264MiB |      0%      Default |
    |                                         |                        |                  N/A |
    +-----------------------------------------+------------------------+----------------------+
    
    +-----------------------------------------------------------------------------------------+
    | Processes:                                                                              |
    |  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
    |        ID   ID                                                               Usage      |
    |=========================================================================================|
    |  No running processes found                                                             |
    +-----------------------------------------------------------------------------------------+
    
  2. 安装 Docker Engine

    # 卸载旧版本 Docker(如有)
    sudo apt-get remove docker.io docker-doc containerd
    # 添加 Docker 官方源
    curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
    echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
    sudo apt-get update
    sudo apt-get install docker-ce docker-ce-cli containerd.io -y
    # 验证 Docker
    docker info
    
    root@i-28e6iose:/home/ubuntu# docker info
    Client: Docker Engine - Community
     Version:    28.0.1
     Context:    default
     Debug Mode: false
     Plugins:
      buildx: Docker Buildx (Docker Inc.)
        Version:  v0.21.1
        Path:     /usr/libexec/docker/cli-plugins/docker-buildx
      compose: Docker Compose (Docker Inc.)
        Version:  v2.33.1
        Path:     /usr/libexec/docker/cli-plugins/docker-compose
    
    Server:
     Containers: 10
      Running: 10
      Paused: 0
      Stopped: 0
     Images: 10
     Server Version: 28.0.1
    
  3. 配置 NVIDIA Container Toolkit
    在这里插入图片描述

    nvidia/cuda:12.2.0-base-ubuntu22.04 是一个基于 Ubuntu 22.04 操作系统的 NVIDIA CUDA 基础镜像,用于运行需要 GPU 加速的计算环境。CUDA(Compute Unified Device Architecture)是 NVIDIA 提供的一个并行计算平台和编程模型,它使开发者可以使用 NVIDIA GPU 进行高性能计算。

    这个镜像提供了 CUDA 12.2.0 版本,适用于需要利用 NVIDIA GPU 进行深度学习、科学计算和其他计算密集型任务的场景。CUDA 12.2.0 版本带来了许多改进和新特性,包括对新架构的支持、性能优化和新 API

    https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

    # 添加仓库并安装工具包
    curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
    curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
    sudo apt-get update
    sudo apt-get install nvidia-container-toolkit -y
    # 配置 Docker 运行时
    sudo nvidia-ctk runtime configure --runtime=docker
    sudo systemctl restart docker
    
    root@i-28e6iose:/home/ubuntu# sudo nvidia-ctk runtime configure --runtime=docker
    INFO[0000] Loading config from /etc/docker/daemon.json
    INFO[0000] Wrote updated config to /etc/docker/daemon.json
    INFO[0000] It is recommended that docker daemon be restarted.
    
    # 验证 CUDA 容器
    docker run --rm --gpus all nvidia/cuda:12.2.0-base-ubuntu22.04 nvidia-smi
    
    root@i-28e6iose:/home/ubuntu# docker run --rm --gpus all nvidia/cuda:12.2.0-base-ubuntu22.04 nvidia-smi
    Sun Mar  9 13:10:55 2025
    +-----------------------------------------------------------------------------------------+
    | NVIDIA-SMI 570.124.06             Driver Version: 570.124.06     CUDA Version: 12.8     |
    |-----------------------------------------+------------------------+----------------------+
    | GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
    |                                         |                        |               MIG M. |
    |=========================================+========================+======================|
    |   0  NVIDIA GeForce RTX 2080 Ti     Off |   00000000:00:0C.0 Off |                  N/A |
    | 22%   26C    P8             21W /  250W |       4MiB /  11264MiB |      0%      Default |
    |                                         |                        |                  N/A |
    +-----------------------------------------+------------------------+----------------------+
    
    +-----------------------------------------------------------------------------------------+
    | Processes:                                                                              |
    |  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
    |        ID   ID                                                               Usage      |
    |=========================================================================================|
    |  No running processes found                                                             |
    +-----------------------------------------------------------------------------------------+
    

三、部署 GPUStack 容器

  1. 运行 GPUStack 主节点

    docker run -d \
      --gpus all \
      -p 890:80 \
      --ipc=host \
      --name gpustack \
      -v gpustack-data:/var/lib/gpustack \
      gpustack/gpustack:latest
    
    • 参数说明
      • --gpus all:启用所有 GPU 资源。
      • --ipc=host:共享主机 IPC 命名空间,提升性能。
      • -v gpustack-data:持久化存储配置与模型数据。
  2. 获取初始密码

    docker exec -it gpustack cat /var/lib/gpustack/initial_admin_password
    
    root@i-28e6iose:/home/ubuntu# docker exec -it gpustack cat /var/lib/gpustack/initial_admin_password
    rjl@Ainm3dtQ
    
    #账户信息:
    admin/rjl@Ainm3dtQ
    #修改密码:P@88w0rd
    

    访问 http://<服务器IP>,使用用户名 admin 和上述密码登录,首次需重置密码。


在这里插入图片描述

四、扩展 GPU 集群

  1. 添加 Worker 节点
    • 在主节点获取 Token:
      docker exec -it gpustack cat /var/lib/gpustack/token
      
    • 在 Worker 节点运行:
      docker run -d \
        --gpus all \
        --network=host \
        --ipc=host \
        gpustack/gpustack \
        --server-url http://<主节点IP> \
        --token <获取的Token>
      

五、功能使用示例

  1. 部署大模型
    在 GPUStack 控制台的 Models 页面,支持从 Hugging Face 或本地导入模型。例如部署 Llama3.2 模型时,系统会自动分配 GPU 资源并生成 API 端点。

  2. Playground 调测
    在 Playground 中可测试多模态模型(如 Stable Diffusion)、文本嵌入模型(BERT)等,支持多模型对比与参数优化。


六、常见问题

  • GPU 未识别:检查 nvidia-smi 是否正常,并确认 Docker 运行时配置正确。
  • 容器启动失败:确保已启用 --ipc=host 并挂载持久化卷。
  • 网络问题:跨节点通信需开放防火墙的 80 端口及内部 RPC 端口(默认为 6789)。

七、参考资源

  • GPUStack 官方 Docker 部署文档
  • NVIDIA Container Toolkit 配置指南

通过以上步骤,您可快速搭建一个支持异构 GPU 资源调度的企业级大模型服务平台,实现从单机到集群的高效扩展。


http://www.kler.cn/a/579484.html

相关文章:

  • 微软程序的打包格式MSIX
  • 人类的学习既有强化学习也有弱化学习
  • Java后端高频面经——Spring、SpringBoot、MyBatis
  • tcc编译器教程2 编译lua解释器
  • DeepSeek教我写词典爬虫获取单词的音标和拼写
  • 非常重要的动态内存错误和柔性数组1
  • Vue 的 render 函数如何与 JSX 结合使用
  • P9421 [蓝桥杯 2023 国 B] 班级活动--数学题(配对问题)
  • 基于遗传算法的IEEE33节点配电网重构程序
  • leetcode77.组合
  • 基于STC89C52的8x8点阵贪吃蛇游戏
  • Vue 3 实现富文本内容导出 Word 文档:前端直出方案与优化实践
  • 【SpringBoot】深入解析 Maven 的操作与配置
  • 计算机网络:电路交换,报文交换,分组交换
  • golang学习笔记——go语言安装及系统环境变量设置
  • 2025.3.9机器学习笔记:文献阅读
  • 物联网-IoTivity:开源的物联网框架
  • 深度学习DNN实战
  • 批量删除 Excel 中所有图片、某张指定图片以及二维码图片
  • 电子档案图片jpg格式表单化审核