当前位置: 首页 > article >正文

基于PyTorch的深度学习6——数据处理工具箱1

PyTorch涉及数据处理(数据装载、数据预处理、数据增强等)主要工具包及相互关系如图所示

torch.utils.data工具包,它包括以下4个类。

1)Dataset:是一个抽象类,其他数据集需要继承这个类,并且覆写其中的两个方法(_getitem__、__len__)。

2)DataLoader:定义一个新的迭代器,实现批量(batch)读取,打乱数据(shuffle)并提供并行加速等功能。

3)random_split:把数据集随机拆分为给定长度的非重叠的新数据集。

4)*sampler:多种采样函数。

PyTorch可视化处理工具(Torchvision),其是PyTorch的一个视觉处理工具包,独立于PyTorch,需要另外安装。

pip  install torchvision #或conda install torchvision

它包括4个类,各类的主要功能如下。

1)datasets:提供常用的数据集加载,设计上都是继承自torch.utils.data.Dataset,主要包括MMIST、CIFAR10/100、ImageNet和COCO等。

2)models:提供深度学习中各种经典的网络结构以及训练好的模型(如果选择pretrained=True)​,包括AlexNet、VGG系列、ResNet系列、Inception系列等。

3)transforms:常用的数据预处理操作,主要包括对Tensor及PIL Image对象的操作。

4)utils:含两个函数,一个是make_grid,它能将多张图片拼接在一个网格中;另一个是save_img,它能将Tensor保存成图片。

——————————————————utils.data

utils.data包括Dataset和DataLoader。

torch.utils.data.Dataset为抽象类。自定义数据集需要继承这个类,并实现两个函数,一个是__len__,另一个是__getitem__,前者提供数据的大小(size),后者通过给定索引获取数据和标签。

__getitem__一次只能获取一个数据,所以需要通过torch.utils.data.DataLoader来定义一个新的迭代器,实现batch读取。

首先我们来定义一个简单的数据集,然后通过具体使用Dataset及DataLoader,给读者一个直观的认识

1)导入需要的模块

import torch
from torch.utils import data
import numpy as np

2)定义获取数据集的类

该类继承基类Dataset,自定义一个数据集及对应标签

import torch
from torch.utils.data import Dataset
import numpy as np

class TestDataset(Dataset):
    def __init__(self):
        super(TestDataset, self).__init__()  # 显式调用父类初始化
        self.Data = np.asarray([[1, 2], [3, 4], [2, 1], [3, 4], [4, 5]], dtype=np.float32)
        self.Label = np.asarray([0, 1, 0, 1, 2], dtype=np.int64)

    def __getitem__(self, index):
        # 将numpy数据转换为Tensor
        txt = torch.from_numpy(self.Data[index])  # 默认float32
        label = torch.tensor(self.Label[index], dtype=torch.long)  # 显式指定类型
        return txt, label

    def __len__(self):
        return len(self.Data)

3)获取数据集中的数据

Test=TestDataset()
print(Test[2]) #相当于调用__getitem__(2)
print(Test.__len__())

以上数据以tuple返回,每次只返回一个样本。实际上,Dateset只负责数据的抽取,调用一次__getitem__只返回一个样本。如果希望批量处理(batch),还要同时进行shuffle和并行加速等操作,可选择DataLoader。

DataLoader的格式为:

data.DataLoader(
    dataset,
    batch_size=1,
    shuffle=False,
    sampler=None,
    batch_sampler=None,
    num_workers=0,
    collate_fn=<function default_collate at 0x7f108ee01620>,
    pin_memory=False,
    drop_last=False,
    timeout=0,
    worker_init_fn=None,
)

主要参数说明:

• dataset:加载的数据集。

• batch_size:批大小。

• shuffle:是否将数据打乱。

• sampler:样本抽样。

• num_workers:使用多进程加载的进程数,0代表不使用多进程。

• collate_fn:如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可。

• pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些。

• drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃。

test_loader=data.DataLoader(Test,batch_size=2,shuffle=False,num_workers=2)
for i,traindata in enumerate(test_loader):
    print('i:',i)
    Data,Label=traindata
    print('data:',Data)
    print('Label:',Label)

运行结果:

i: 0
data: tensor([[1, 2],
        [3, 4]])
Label: tensor([0, 1])
i: 1
data: tensor([[2, 1],
        [3, 4]])
Label: tensor([0, 1])
i: 2
data: tensor([[4, 5]])
Label: tensor([2])

从这个结果可以看出,这是批量读取。我们可以像使用迭代器一样使用它,比如对它进行循环操作。不过由于它不是迭代器,我们可以通过iter命令将其转换为迭代器。

dataiter=iter(test_loader)
imgs,labels=next(dataiter)

一般用data.Dataset处理同一个目录下的数据。如果数据在不同目录下,因为不同的目录代表不同类别(这种情况比较普遍)​,使用data.Dataset来处理就很不方便。不过,使用PyTorch另一种可视化数据处理工具(即torchvision)就非常方便,不但可以自动获取标签,还提供很多数据预处理、数据增强等转换函数


http://www.kler.cn/a/579727.html

相关文章:

  • Jmeter-RSA加密、解密、加签、验签
  • 怎么使用数据集微调大模型LLM
  • 如何增强机器学习基础,提升大模型面试通过概率
  • 在Linux开发板中使用.NET实现音频开发
  • labview实现16进制数据相加取反,取低16位校验
  • Easyexcel 应用
  • springboot三层架构详细讲解
  • matlab慕课学习3.2+3.3
  • 1433抓鸡工具_1433抓鸡工具在软件安全测试中的重要性及应用
  • 尚硅谷TS快速入门笔记(个人笔记用)
  • Rust语言:开启高效编程之旅
  • mysql的MHA
  • Vue3 路由的路径参数
  • c++中使用递归进行快速排序
  • AI 赋能软件开发:从工具到思维的全面升级
  • Pycharm修改默认执行框架为unittest
  • Java LeetCode 热题 100 回顾40
  • 常见排序算法深度评测:从原理到10万级数据实战
  • Kubernetes ConfigMap 使用方式实验
  • 1-001:MySQL的存储引擎有哪些?它们之间有什么区别?