P10周:Pytorch实现车牌识别
一、导入数据
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.models as models
import torch.nn.functional as F
import torch.nn as nn
import torch,torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
1.获取类别名
import os,PIL,random,pathlib
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
data_dir = 'F:/jupyter lab/DL-100-days/datasets/licence_plate_photos/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[5].split("_")[1].split(".")[0] for path in data_paths]
print(classeNames)
data_paths = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
data_paths_str
2.数据可视化
plt.figure(figsize=(14,5))
plt.suptitle("数据示例",fontsize=15)
for i in range(18):
plt.subplot(3,6,i+1)
# plt.xticks([])
# plt.yticks([])
# plt.grid(False)
# 显示图片
images = plt.imread(data_paths_str[i])
plt.imshow(images)
plt.show()
3.标签数字化
import numpy as np
char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\
"豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"]
number = [str(i) for i in range(0, 10)] # 0 到 9 的数字
alphabet = [chr(i) for i in range(65, 91)] # A 到 Z 的字母
char_set = char_enum + number + alphabet
char_set_len = len(char_set)
label_name_len = len(classeNames[0])
# 将字符串数字化
def text2vec(text):
vector = np.zeros([label_name_len, char_set_len])
for i, c in enumerate(text):
idx = char_set.index(c)
vector[i][idx] = 1.0
return vector
all_labels = [text2vec(i) for i in classeNames]
4.加载数据文件
import os
import pandas as pd
from torchvision.io import read_image
from torch.utils.data import Dataset
import torch.utils.data as data
from PIL import Image
class MyDataset(data.Dataset):
def __init__(self, all_labels, data_paths_str, transform):
self.img_labels = all_labels # 获取标签信息
self.img_dir = data_paths_str # 图像目录路径
self.transform = transform # 目标转换函数
def __len__(self):
return len(self.img_labels)
def __getitem__(self, index):
image = Image.open(self.img_dir[index]).convert('RGB')#plt.imread(self.img_dir[index]) # 使用 torchvision.io.read_image 读取图像
label = self.img_labels[index] # 获取图像对应的标签
if self.transform:
image = self.transform(image)
return image, label # 返回图像和标签
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = MyDataset(all_labels, data_paths_str, train_transforms)
total_data
<__main__.MyDataset at 0x24892591610>
5.划分数据
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_size,test_size
(10940, 2735)
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=16,
shuffle=True)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=16,
shuffle=True)
print("The number of images in a training set is: ", len(train_loader)*16)
print("The number of images in a test set is: ", len(test_loader)*16)
print("The number of batches per epoch is: ", len(train_loader))
The number of images in a training set is: 10944 The number of images in a test set is: 2736 The number of batches per epoch is: 684
for X, y in test_loader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
Shape of X [N, C, H, W]: torch.Size([16, 3, 224, 224]) Shape of y: torch.Size([16, 7, 69]) torch.float64
二、自建模型
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24*50*50, label_name_len*char_set_len)
self.reshape = Reshape([label_name_len,char_set_len])
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
# 最终reshape
x = self.reshape(x)
return x
# 定义Reshape层
class Reshape(nn.Module):
def __init__(self, shape):
super(Reshape, self).__init__()
self.shape = shape
def forward(self, x):
return x.view(x.size(0), *self.shape)
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
model
Using cuda device
Network_bn( (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc1): Linear(in_features=60000, out_features=483, bias=True) (reshape): Reshape() )
import torchsummary
''' 显示网络结构 '''
torchsummary.summary(model, (3, 224, 224))
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 12, 220, 220] 912 BatchNorm2d-2 [-1, 12, 220, 220] 24 Conv2d-3 [-1, 12, 216, 216] 3,612 BatchNorm2d-4 [-1, 12, 216, 216] 24 MaxPool2d-5 [-1, 12, 108, 108] 0 Conv2d-6 [-1, 24, 104, 104] 7,224 BatchNorm2d-7 [-1, 24, 104, 104] 48 Conv2d-8 [-1, 24, 100, 100] 14,424 BatchNorm2d-9 [-1, 24, 100, 100] 48 MaxPool2d-10 [-1, 24, 50, 50] 0 Linear-11 [-1, 483] 28,980,483 Reshape-12 [-1, 7, 69] 0 ================================================================ Total params: 29,006,799 Trainable params: 29,006,799 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.57 Forward/backward pass size (MB): 26.56 Params size (MB): 110.65 Estimated Total Size (MB): 137.79 ----------------------------------------------------------------
三、模型训练
1.优化器、训练、损失函数
learn_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader, model, optimizer, loss_fn):
size = len(dataloader.dataset) # 数据集大小
num_batches = len(dataloader) # 批次数目
model.train()
train_loss, correct = 0.0, 0.0 # 初始化为浮点数
for X, y in dataloader:
X, y = X.to(device), y.to(device)
# 前向传播
pred = model(X)
# 确保 pred 和 y 的形状匹配 [N, 7, 69]
pred_flat = pred.view(-1, 69) # [N * 7, 69]
y_flat = y.view(-1, 69) # [N * 7, 69]
# 计算损失
loss = loss_fn(pred_flat, y_flat.float())
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 更新训练损失和准确率
train_loss += loss.item()
# 计算准确率(例如,可以计算每个位置上的平均准确率)
with torch.no_grad():
pred_probs = F.sigmoid(pred_flat)
batch_correct = ((pred_probs > 0.5) == y_flat.bool()).float().mean().item()
correct += batch_correct
# 计算平均损失和准确率
train_loss /= num_batches
train_acc = correct / num_batches
return train_acc, train_loss
def test(dataloader, model, loss_fn):
num_batches = len(dataloader) # 批次数目
test_loss, correct = 0.0, 0.0 # 初始化为浮点数
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
# 确保 pred 和 y 的形状匹配 [N, 7, 69]
pred_flat = pred.view(-1, 69) # [N * 7, 69]
y_flat = y.view(-1, 69) # [N * 7, 69]
# 计算损失
loss = loss_fn(pred_flat, y_flat.float())
test_loss += loss.item()
# 计算准确率(例如,可以计算每个位置上的平均准确率)
pred_probs = F.sigmoid(pred_flat)
batch_correct = ((pred_probs > 0.5) == y_flat.bool()).float().mean().item()
correct += batch_correct
# 计算平均损失和准确率
test_loss /= num_batches
test_acc = correct / num_batches
return test_acc, test_loss
2.模型的训练
epochs = 20
train_acc, train_loss, test_acc, test_loss = [], [], [], []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, optimizer, loss_fn)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 输出
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
print(template.format(epoch + 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
Epoch: 1, Train_acc:96.9%, Train_loss:2.583, Test_acc:98.3%, Test_loss:1.517 Epoch: 2, Train_acc:98.9%, Train_loss:0.777, Test_acc:98.8%, Test_loss:0.912 Epoch: 3, Train_acc:99.3%, Train_loss:0.257, Test_acc:99.1%, Test_loss:0.729 Epoch: 4, Train_acc:99.5%, Train_loss:0.101, Test_acc:99.0%, Test_loss:0.749 Epoch: 5, Train_acc:99.6%, Train_loss:0.053, Test_acc:99.0%, Test_loss:0.816 Epoch: 6, Train_acc:99.5%, Train_loss:0.063, Test_acc:99.1%, Test_loss:0.800 Epoch: 7, Train_acc:99.5%, Train_loss:0.076, Test_acc:99.0%, Test_loss:0.889 Epoch: 8, Train_acc:99.6%, Train_loss:0.068, Test_acc:99.2%, Test_loss:0.887 Epoch: 9, Train_acc:99.7%, Train_loss:0.038, Test_acc:99.2%, Test_loss:0.838 Epoch:10, Train_acc:99.7%, Train_loss:0.032, Test_acc:99.2%, Test_loss:0.828 Epoch:11, Train_acc:99.7%, Train_loss:0.028, Test_acc:99.2%, Test_loss:0.821 Epoch:12, Train_acc:99.7%, Train_loss:0.027, Test_acc:99.2%, Test_loss:0.913 Epoch:13, Train_acc:99.7%, Train_loss:0.029, Test_acc:99.2%, Test_loss:0.818 Epoch:14, Train_acc:99.7%, Train_loss:0.022, Test_acc:99.2%, Test_loss:0.875 Epoch:15, Train_acc:99.7%, Train_loss:0.018, Test_acc:99.3%, Test_loss:0.848 Epoch:16, Train_acc:99.8%, Train_loss:0.017, Test_acc:99.2%, Test_loss:1.060 Epoch:17, Train_acc:99.7%, Train_loss:0.022, Test_acc:99.2%, Test_loss:0.968 Epoch:18, Train_acc:99.7%, Train_loss:0.015, Test_acc:99.3%, Test_loss:0.847 Epoch:19, Train_acc:99.8%, Train_loss:0.012, Test_acc:99.3%, Test_loss:0.815 Epoch:20, Train_acc:99.8%, Train_loss:0.007, Test_acc:99.3%, Test_loss:0.842
四、结果分析
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training= Loss')
plt.show()
五、学习心得
1.本周对无法分类的数据集,进行导入和识别,并搭建了相关的自建模型。这个自建的 Network_bn
模型是一个卷积神经网络(CNN),模型中使用了批标准化(Batch Normalization, BN)和池化(Pooling)层,共有四组卷积和批标准化。
2.计算的training_loss的数值过大。这点需要考虑。