当前位置: 首页 > article >正文

CVPR2025轨迹预测相关论文以及自动驾驶端到端相关论文

CVPR2025

1、基于自动驾驶的轨迹预测相关论文:

  1. Leveraging SD Map to Augment HD Map-based Trajectory Prediction
  2. ModeSeq: Taming Sparse Multimodal Motion Prediction with Sequential Mode Modeling
  3. Adapting to Observation Length of Trajectory Prediction via Contrastive Learning
  4. From Sparse Signal to Smooth Motion: Real-Time Motion Generation with Rolling Prediction Models
  5. Physical Plausibility-aware Trajectory Prediction via Locomotion Embodiment
  6. Towards Generalizable Trajectory Prediction using Dual-Level Representation Learning and Adaptive Prompting
  7. Multiple Object Tracking as ID Prediction
  8. Enduring, Efficient and Robust Trajectory Prediction Attack in Autonomous Driving via Optimization-Driven Multi-Frame Perturbation Framework
  9. Tra-MoE: Learning Trajectory Prediction Model from Multiple Domains for Adaptive Policy Conditioning
  10. Poly-Autoregressive Prediction for Modeling Interactions

2、基于端到端自动驾驶相关论文

  1. Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning
  2. DriveGPT4-V2: Harnessing Large Language Model Capabilities for Enhanced Closed-Loop Autonomous Driving
  3. Distilling Multi-modal Large Language Models for Autonomous Driving
  4. MPDrive: Improving Spatial Understanding with Marker-Based Prompt Learning for Autonomous Driving
  5. DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving
  6. CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-Scale Reinforcement Learning in Autonomous Driving
  7. Don’t Shake the Wheel: Momentum-Aware Planning in End-to-End Autonomous Driving
  8. GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
  9. SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving

http://www.kler.cn/a/581672.html

相关文章:

  • Android Service封装实战:基于Binder与接口的高效通信方案
  • 算法手记1
  • 【技术白皮书】内功心法 | 第二部分 | Telnet远程登录的工作原理
  • 使用pytest-xdist让自动化并行测试变得轻松简单
  • uniapp在APP平台(Android/iOS)选择非媒体文件
  • AI与.NET技术实操系列:ML.NET篇
  • conda 配置新环境时package will be install 和 package will be download 的区别
  • 商业智能BI的未来,如何看待AI+BI这种模式?
  • 深入探索 Unsafe Rust:超越编译器安全保障的超能力
  • golang 高性能的 MySQL 数据导出
  • [算法] 结点K个一组的链表反转(hard)
  • Spring Cloud Alibaba 实战:Sentinel 保障微服务的高可用性与流量防护
  • Trae AI 辅助修复uniapp 微信小程序的Bug
  • Flink之SQL join
  • datax-coud部署
  • docker2
  • Git基本概念及使用
  • 前端开发中的设计模式:观察者模式的应用与实践
  • 《基于深度学习的本科论文撰写智能校验助手》开题报告
  • 主流编程语言的对比分析