动态规划 -第1篇
前言:在计算机科学中,动态规划(Dynamic Programming,简称DP)是解决最优化问题的一种重要方法。通过将大问题拆解为小问题,动态规划不仅能够显著降低计算复杂度,还能提高效率。无论是经典的背包问题,还是更加复杂的路径最短问题,动态规划都能提供优雅且高效的解法。
本篇文章将带领你走进动态规划的世界,从基础概念到实际应用,逐步揭开这一算法的神秘面纱。无论你是算法新手,还是希望深入理解动态规划背后原理的开发者,本文都将为你提供清晰的思路和具体的示例。😊😊
1.第 N 个泰波那契数(easy)
1. 题⽬链接:1137. 第 N 个泰波那契数 - 力扣(LeetCode)
2. 解法(动态规划)
算法流程
1. 状态表⽰:
这道题可以「根据题⽬的要求」直接定义出状态表⽰:
dp[i] 表⽰:第 i 个泰波那契数的值。
2. 状态转移⽅程:
题⽬已经⾮常贴⼼的告诉我们了:
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
3. 初始化:
从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因为 dp[-2] 或 dp[-1] 不是⼀个有效的数据。
因此我们需要在填表之前,将 0, 1, 2 位置的值初始化。题⽬中已经告诉我们 dp[0] = 0, dp[1] = dp[2] = 1 。
4. 填表顺序:
毫⽆疑问是「从左往右」。
5. 返回值:
应该返回 dp[n] 的值。
3.C++ 算法代码
使⽤⼀维数组:
class Solution {
public:
int tribonacci(int n) {
vector<int> v(n+1);
if(n>=0) v[0]=0;
if(n>=1) v[1]=1;
if(n>=2) v[2]=1;
for(int i=3;i<=n;i++)
{
v[i]=v[i-1]+v[i-2]+v[i-3];
}
return v[n];
}
};
2. 三步问题(easy)
1.题目链接:面试题 08.01. 三步问题 - 力扣(LeetCode)
2. 解法(动态规划)
算法思路
1. 状态表⽰
这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰: dp[i] 表⽰:到达 i 位置时,⼀共有多少种⽅法。
2. 状态转移⽅程
以 i 位置状态的最近的⼀步,来分情况讨论:
如果 dp[i] 表⽰⼩孩上第 i 阶楼梯的所有⽅式,那么它应该等于所有上⼀步的⽅式之和:
i. 上⼀步上⼀级台阶, dp[i] += dp[i - 1] ;
ii. 上⼀步上两级台阶, dp[i] += dp[i - 2] ;
iii. 上⼀步上三级台阶, dp[i] += dp[i - 3] ;
综上所述, dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] 。
需要注意的是,这道题⽬说,由于结果可能很⼤,需要对结果取模。在计算的时候,三个值全部加起来再取模,即 (dp[i - 1] + dp[i - 2] + dp[i - 3]) % MOD 是不可取的,同学们可以试验⼀下, n 取题⽬范围内最⼤值时,⽹站会报错 signed integer overflow
对于这类需要取模的问题,我们每计算⼀次(两个数相加/乘等),都需要取⼀次模。否则,万⼀发⽣了溢出,我们的答案就错了。
3. 初始化
从我们的递推公式可以看出, dp[i] 在 i = 0, i = 1 以及 i = 2 的时候是没有办法进⾏推导的,因为 dp[-3] dp[-2] 或 dp[-1] 不是⼀个有效的数据。
因此我们需要在填表之前,将 1, 2, 3 位置的值初始化。 根据题意, dp[1] = 1, dp[2] = 2, dp[3] = 4 。
4. 填表顺序
毫⽆疑问是「从左往右」。
5. 返回值
应该返回 dp[n] 的值。
3.代码实现
class Solution {
public:
const int MOD = 1e9 + 7;
int waysToStep(int n) {
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回
// 处理边界情况
if(n == 1 || n == 2) return n;
if(n == 3) return 4;
vector<int> dp(n + 1);
dp[1] = 1, dp[2] = 2, dp[3] = 4;
for(int i = 4; i <= n; i++)
dp[i] = ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;
return dp[n];
}
}
3. 使⽤最⼩花费爬楼梯(easy)
1. 题⽬链接:746. 使用最小花费爬楼梯 - 力扣(LeetCode)
2. 解法(动态规划)
算法思路:解法⼀:
1. 状态表⽰:
这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰: 第⼀种:以 i 位置为结尾,
dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要算上)
2. 状态转移⽅程:
根据最近的⼀步,分情况讨论:
▪ 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:
dp[i - 1] + csot[i - 1] ;
▪ 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置:
dp[i - 2] + csot[i - 2] 。
3. 初始化:
从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到 dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。
4. 填表顺序:
根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。
5. 返回值:
根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。
3.C++ 算法代码:
class Solution { public: int minCostClimbingStairs(vector<int>& cost) { int n = cost.size();
// 初始化⼀个 dp表
vector<int> dp(n + 1, 0);
// 初始化
dp[0] = dp[1] = 0;
// 填表
for (int i = 2; i < n + 1; i++)
// 根据状态转移⽅程得
dp[i] = min(cost[i - 1] + dp[i - 1], cost[i - 2] + dp[i - 2]);
// 返回结果
return dp[n]; }
};
解法⼆:
1. 状态表⽰:
这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰: 第⼆种:以 i 位置为起点,
dp[i] 表⽰:从 i 位置出发,到达楼顶,此时的最⼩花费。
2. 状态转移⽅程:
根据最近的⼀步,分情况讨论:
▪ ⽀付 cost[i] ,往后⾛⼀步,接下来从 i + 1 的位置出发到终点: dp[i + 1] +cost[i] ;
▪ ⽀付 cost[i] ,往后⾛两步,接下来从 i + 2 的位置出发到终点: dp[i + 2] +cost[i] ;
我们要的是最⼩花费,因此 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i] 。
3. 初始化:
为了保证填表的时候不越界,我们需要初始化最后两个位置的值,结合状态表⽰易得: dp[n -1] = cost[n - 1], dp[n - 2] = cost[n - 2]
4. 填表顺序:
根据「状态转移⽅程」可得,遍历的顺序是「从右往左」。
5. 返回值:
根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。
C++ 算法代码:
class Solution
{
public:
int minCostClimbingStairs(vector<int>& cost)
{
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表顺序
// 4. 返回值
int n = cost.size();
vector<int> dp(n);
dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2];
for(int i = n - 3; i >= 0; i--)
dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i];
return min(dp[0], dp[1]);
}
}
4. 解码⽅法(medium)
1.题目链接:91. 解码方法 - 力扣(LeetCode)
2. 解法(动态规划):
算法思路
1. 类似于斐波那契数列~ 1. 状态表⽰:
根据以往的经验,对于⼤多数线性 dp ,我们经验上都是「以某个位置结束或者开始」做⽂章,这⾥我们继续尝试「⽤ i 位置为结尾」结合「题⽬要求」来定义状态表⽰。
dp[i] 表⽰:字符串中 [0,i] 区间上,⼀共有多少种编码⽅法。
2. 状态转移⽅程:
定义好状态表⽰,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导来。关于 i 位置的编码状况,我们可以分为下⾯两种情况:
i. 让 i 位置上的数单独解码成⼀个字⺟;
ii. 让 i 位置上的数与 i - 1 位置上的数结合,解码成⼀个字⺟。
下⾯我们就上⾯的两种解码情况,继续分析:
让 i 位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
i. 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解
码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅
法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就
可以了。此时 dp[i] = dp[i - 1] ;
ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。
让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
i. 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以
解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ] 区间上的解码
⽅法,原因同上。此时 dp[i] = dp[i - 2] ;
ii. 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 ...... 这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。
综上所述: dp[i] 最终的结果应该是上⾯四种情况下,解码成功的两种的累加和(因为我们关⼼的是解码⽅法,既然解码失败,就不⽤加⼊到最终结果中去),因此可以得到状态转移⽅程
( dp[i] 默认初始化为 0 ):
i. 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
ii. 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] += dp[i - 2] ;
如果上述两个判断都不成⽴,说明没有解码⽅法, dp[i] 就是默认值 0 。
3. 初始化:
⽅法⼀(直接初始化):
由于可能要⽤到 i - 1 以及 i - 2 位置上的 dp 值,因此要先初始化「前两个位置」。 初始化 dp[0]:
i. 当 s[0] == '0' 时,没有编码⽅法,结果 dp[0] = 0 ;
ii. 当 s[0] != '0' 时,能编码成功, dp[0] = 1 初始化 dp[1] :
i. 当 s[1] 在 [1,9] 之间时,能单独编码,此时 dp[1] += dp[0] (原因同上,dp[1] 默认为 0 )
ii. 当 s[0] 与 s[1] 结合后的数在 [10, 26] 之间时,说明在前两个字符中,⼜有⼀种编码⽅式,此时 dp[1] += 1;
⽅法⼆(添加辅助位置初始化):
可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要保证后续填表是正确的;
ii. 下标的映射关系
4. 填表顺序:
毫⽆疑问是「从左往右」
5. 返回值:
应该返回 dp[n - 1] 的值,表⽰在 [0, n - 1] 区间上的编码⽅法。
3.C++ 算法代码:
使⽤直接初始化的⽅式解决问题:
class Solution
{
public:
int numDecodings(string s)
{
int n = s.size();
vector<int> dp(n); // 创建⼀个 dp表
// 初始化前两个位置
dp[0] = s[0] != '0';
if(n == 1) return dp[0]; // 处理边界情况
if(s[1] <= '9' && s[1] >= '1') dp[1] += dp[0];
int t = (s[0] - '0') * 10 + s[1] - '0';
if(t >= 10 && t <= 26) dp[1] += 1;
// 填表
for(int i = 2; i < n; i++)
{
// 如果单独编码
if(s[i] <= '9' && s[i] >= '1') dp[i] += dp[i - 1];
// 如果和前⾯的⼀个数联合起来编码
int t = (s[i - 1] - '0') * 10 + s[i] - '0';
if(t >= 10 && t <= 26) dp[i] += dp[i - 2];
}
// 返回结果
return dp[n - 1];
}
}
5. 不同路径(medium)
1. 题⽬链接:62. 不同路径 - 力扣(LeetCode)
2. 解法(动态规划):
算法思路:
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发;
ii. 从起始位置出发,到达 [i, j] 位置。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移⽅程:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之
前的⼀⼩步,有两种情况:
i. 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
ii. 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。 由于我们要求的是有多少种⽅法,因此状态转移⽅程就呼之欲出了: dp[i][j] = dp[i - 1] [j] + dp[i][j - 1] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,「添加⼀⾏」,并且「添加⼀列」后,只需将 dp[0][1] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,在填写每⼀⾏的时候「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回 dp[m][n] 的值。
3.C++ 算法代码:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m+1,vector<int>(n+1,0));
dp[0][1]=1;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
dp[i][j]=dp[i][j-1]+dp[i-1][j];
}
}
return dp[m][n];
}
};
6. 不同路径II(medium)
1. 题⽬链接:63. 不同路径 II - 力扣(LeetCode)
2.. 解法(动态规划):
算法思路:
本题为不同路径的变型,只不过有些地⽅有「障碍物」,只要在「状态转移」上稍加修改就可解决。
1. 状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
i. 从 [i, j] 位置出发;
ii. 从起始位置出发,到达 [i, j] 位置。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之
前的⼀⼩步,有两种情况:
i. 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
ii. 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。 但是, [i - 1, j] 与 [i, j - 1] 位置都是可能有障碍的,此时从上⾯或者左边是不可能到达 [i, j] 位置的,也就是说,此时的⽅法数应该是 0。
由此我们可以得出⼀个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的
值,直接让它等于 0 即可。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,添加⼀⾏,并且添加⼀列后,只需将 dp[1][0] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移」的推导,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n] 。
3.C++ 算法代码:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& vv) {
int m=vv.size();
int n=vv[0].size();
vector<vector<int>>dp(m+1,vector<int>(n+1));
dp[0][1]=1;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(vv[i-1][j-1]==0)
{
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
}
return dp[m][n];
}
};