yolov8在昇腾芯片上的测试
目录
模型下载
模型转换
pt->onnx
PC上安装 ultralytics
转换过程
onnx->om
模型性能测试
依赖软件安装
python安装源配置
ais工具编译
构建aclruntime包
构建ais_bench推理程序包
安装ais工具
模型推理性能测试
帧率及时延
资源消耗情况
功耗
总结
模型下载
YOLOv8 -Ultralytics YOLO 文档
点击模型名称,由于在github上,所以下载会比较慢。
模型转换
参考链接: 昇腾 CANN YOLOV8 和 YOLOV9 适配-云社区-华为云
pt->onnx
PC上安装 ultralytics
大概需要半个小时
pip install ultralytics
以及运行时的依赖
pip install onnx==1.16.1
pip install onnxslim onnxruntime
这里特别要注意 onnx的版本为指定版本。否则会报如下错误:
ImportError: DLL load failed while importing onnx_cpp2py_export :动态链接库(DLL)初始化历程失败
转换过程
H:\310p>python
Python 3.9.2 (tags/v3.9.2:1a79785, Feb 19 2021, 13:44:55) [MSC v.1928 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import ultralytics
>>> from ultralytics import YOLO
>>> model = YOLO('yolov8l.pt')
>>> model.export(format='onnx', dynamic=False, simplify=True, opset=11)
Ultralytics 8.3.88 🚀 Python-3.9.2 torch-2.6.0+cpu CPU (11th Gen Intel Core(TM) i7-1165G7 2.80GHz)
YOLOv8l summary (fused): 112 layers, 43,668,288 parameters, 0 gradients, 165.2 GFLOPs
PyTorch: starting from 'yolov8l.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (83.7 MB)
ONNX: starting export with onnx 1.16.1 opset 11...
ONNX: slimming with onnxslim 0.1.48...
ONNX: export success ✅ 5.6s, saved as 'yolov8l.onnx' (166.8 MB)
Export complete (8.0s)
Results saved to H:\310p
Predict: yolo predict task=detect model=yolov8l.onnx imgsz=640
Validate: yolo val task=detect model=yolov8l.onnx imgsz=640 data=coco.yaml
Visualize: https://netron.app
'yolov8l.onnx'
这里特别注意: model.export(format='onnx', dynamic=False, simplify=True, opset=11)opset参数指定到11,否则在后续转换到OM模型时会报如下错误: E19010
atc --model=yolov8l.onnx --framework=5 --output=yolov8l --