当前位置: 首页 > article >正文

子像素卷积优化记录

待完善

  1. 理解子像素卷积
    子像素卷积是一种通过重排列特征图的通道来实现上采样的方法。它通过将低分辨率特征图的多个通道重新排列成高分辨率图像的空间维度,从而实现上采样。

  2. 子像素卷积的实现
    在PyTorch中,可以使用torch.nn.PixelShuffle来实现子像素卷积。以下是一个简单的示例:

import torch
import torch.nn as nn

class SubPixelConv(nn.Module):
    def __init__(self, upscale_factor):
        super(SubPixelConv, self).__init__()
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

    def forward(self, x):
        return self.pixel_shuffle(x)

# Example usage
input_tensor = torch.randn(1, 16, 8, 8)  # Batch size 1, 16 channels, 8x8 feature map
upscale_factor = 2
model = SubPixelConv(upscale_factor)
output_tensor = model(input_tensor)
print(output_tensor.shape)  # Output shape will be (1, 4, 16, 16)
  1. CUDA优化
    为了在CUDA上优化子像素卷积,可以使用自定义CUDA内核来实现高效的像素重排列。以下是一个简化的示例,展示如何编写自定义CUDA内核:
#include <cuda_runtime.h>

__global__ void subpixel_conv_kernel(float* input, float* output, int channels, int height, int width, int upscale_factor) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int total_elements = channels * height * width;

    if (idx < total_elements) {
        int c = idx / (height * width);
        int h = (idx % (height * width)) / width;
        int w = idx % width;

        int new_c = c / (upscale_factor * upscale_factor);
        int offset = c % (upscale_factor * upscale_factor);
        int new_h = h * upscale_factor + offset / upscale_factor;
        int new_w = w * upscale_factor + offset % upscale_factor;

        int new_idx = new_c * (height * upscale_factor) * (width * upscale_factor) + new_h * (width * upscale_factor) + new_w;
        output[new_idx] = input[idx];
    }
}

extern "C" void subpixel_conv(float* input, float* output, int channels, int height, int width, int upscale_factor) {
    int total_elements = channels * height * width;
    int threads_per_block = 1024;
    int num_blocks = (total_elements + threads_per_block - 1) / threads_per_block;

    subpixel_conv_kernel<<<num_blocks, threads_per_block>>>(input, output, channels, height, width, upscale_factor);
}
  1. 调用CUDA内核
    在Python中,可以使用pycuda或cupy来调用自定义CUDA内核。以下是一个示例:
import numpy as np
import cupy as cp

# Load the CUDA kernel
kernel_code = """
extern "C" __global__ void subpixel_conv_kernel(float* input, float* output, int channels, int height, int width, int upscale_factor) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int total_elements = channels * height * width;

    if (idx < total_elements) {
        int c = idx / (height * width);
        int h = (idx % (height * width)) / width;
        int w = idx % width;

        int new_c = c / (upscale_factor * upscale_factor);
        int offset = c % (upscale_factor * upscale_factor);
        int new_h = h * upscale_factor + offset / upscale_factor;
        int new_w = w * upscale_factor + offset % upscale_factor;

        int new_idx = new_c * (height * upscale_factor) * (width * upscale_factor) + new_h * (width * upscale_factor) + new_w;
        output[new_idx] = input[idx];
    }
}
"""

module = cp.RawModule(code=kernel_code)
subpixel_conv_kernel = module.get_function("subpixel_conv_kernel")

def subpixel_conv(input_tensor, upscale_factor):
    channels, height, width = input_tensor.shape
    output_tensor = cp.zeros((channels // (upscale_factor * upscale_factor), height * upscale_factor, width * upscale_factor), dtype=cp.float32)
    
    threads_per_block = 1024
    total_elements = channels * height * width
    num_blocks = (total_elements + threads_per_block - 1) // threads_per_block
    
    subpixel_conv_kernel((num_blocks,), (threads_per_block,), (input_tensor, output_tensor, channels, height, width, upscale_factor))
    
    return output_tensor

# Example usage
input_tensor = cp.random.randn(16, 8, 8).astype(cp.float32)
upscale_factor = 2
output_tensor = subpixel_conv(input_tensor, upscale_factor)
print(output_tensor.shape)  # Output shape will be (4, 16, 16)

http://www.kler.cn/a/585623.html

相关文章:

  • vscode 中快捷生成模板快捷键
  • C#-使用VisualStudio编译C#工程
  • 【区块链】以太坊
  • 【go】函数类型的作用
  • 多线程(超详细) (ε≡٩(๑>₃<)۶ 一心向学)
  • 数据库技术
  • C++内建函数对象
  • QT基础十四、绘图
  • RabbitMQ (Java)学习笔记
  • 高安全可靠MCU芯片AS32X601应用解析
  • 【北上广深杭大厂AI算法面试题】计算机视觉篇...YOLOv4 相较于YOLOv3有哪些改进?速度更快还是更慢,为什么?(二)
  • 关于Django框架的面试题及其解析
  • 嵌入式2-按键
  • Python网络爬虫之BeautifulSoup库的使用流程和方法
  • 力扣hot100_二叉树(5)_python版本
  • 实验5 逻辑回归
  • 梯度下降法以及随机梯度下降法
  • 作业9 (2023-05-05 数组的定义和初始化)
  • 富文本编辑器(Rich Text Editor,RTE)
  • 矩阵交换行(信息学奥赛一本通-1119)