当前位置: 首页 > article >正文

RTDETR融合[CVPR2025]ARConv中的自适应矩阵卷积


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


《Adaptive Rectangular Convolution for Remote Sensing Pansharpening》

一、 模块介绍

        论文链接:https://arxiv.org/pdf/2503.00467

        代码链接:https://github.com/WangXueyang-uestc/ARConv

论文速览:

         基于卷积神经网络 (CNN) 的遥感全色锐化技术的最新进展显著提高了图像质量。然而,这些方法中的传统卷积模块有两个关键的缺点。首先,卷积运算中的采样位置被限制在一个固定的方形窗口内。其次,采样点的数量是预设的,保持不变。鉴于遥感图像中的物体大小不同,这些刚性参数会导致次优特征提取。为了克服这些限制,我们引入了一个创新的卷积模块,即自适应矩形卷积 (ARConv)。ARConv 自适应地学习卷积核的高度和宽度,并根据学习到的尺度动态调整采样点的数量。这种方法使 ARConv 能够有效地捕获图像中各种对象的比例特定特征,从而优化内核大小和采样位置。此外,我们还提出了 ARNet,这是一种以 ARConv 为主要卷积模块的网络架构。对多个数据集的广泛评估揭示了我们的方法在增强全色锐化性能方面优于以前的技术。消融研究和可视化进一步证实了 ARConv 的疗效。

总结:作者提出一种自适应矩阵卷积,一种卷积的变式。


二、二创融合模块

2.1 相关二创模块及所需参数

        该模块无二创模块。

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, CCRI, [128, 5, True, False]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 1, ARConv, [256, 3]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 4, CCRI, [512, 3, True, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, CCRI, [1024, 3, True, False]]

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 2, RepC4, [256]] # 15, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 16], 1, Concat, [1]] # cat Y4
  - [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1
  - [[-1, 11], 1, Concat, [1]] # cat Y5
  - [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1

  - [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

 2.2 修改train.py文件

       创建Train_RT脚本用于训练。

from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

if __name__ == '__main__':
    model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')
    # model.load('yolov8n.pt')
    model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
                amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入修改好的yaml路径,运行即可训。



http://www.kler.cn/a/587675.html

相关文章:

  • Axure大屏可视化原型模板及素材:数据可视化的高效解决方案
  • 【Unity网络同步框架 - Nakama研究】
  • 第J2周:ResNet50V2算法实现01(Tensorflow硬编码版)
  • 数据结构---堆栈和列
  • 入门基础项目-前端Vue_02
  • JPom使用Docker方式构建SpringBoot项目详解
  • Word 小黑第27套
  • C#程序员接口调用工具与方法
  • 有关Spring 简介和第一个Spring案例:基于XML配置的IoC容器
  • 鸿蒙 @ohos.animator (动画)
  • 具身沟通——机器人和人类如何通过物理交互进行沟通
  • Ubuntu22.04 安装 Isaac gym 中出现的问题
  • oracle 中创建 socket客户端 监听数据库变动,返回数据给服务端!!!
  • 系统架构设计师—案例分析—数据库篇—关系型数据库设计
  • Java 并发编程——BIO NIO AIO 概念
  • [设计模式]1_设计模式概览
  • FastGPT原理分析-数据集创建第一步
  • RHCE(RHCSA复习:npm、dnf、源码安装实验)
  • 驾驭 DeepSeek 科技之翼,翱翔现代学习新天际
  • Harmony OS NEXT API 12核心API深度解析与开发实践