当前位置: 首页 > article >正文

区间预测 | Matlab实现QRBiTCN分位数回归双向时间卷积神经网络注意力机制时序区间预测

Matlab实现QRBiTCN分位数回归双向时间卷积神经网络注意力机制时序区间预测

目录

    • Matlab实现QRBiTCN分位数回归双向时间卷积神经网络注意力机制时序区间预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

  1. Matlab实现QRBiTCN分位数回归双向时间卷积神经网络注意力机制时序区间预测;

2.多图输出、多指标输出(MAE、MAPE、RMSE、MSE、R2、区间覆盖率、区间平均宽度百分比),单变量时序预测,含不同置信区间图;

3.data为数据集,用过去一段时间的变量,预测下一时刻,适用于负荷预测、风速预测等;main为主程序,其余为函数文件,无需运行;代码质量高,注释清楚;

4.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行main文件一键出图。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式资源处下载Matlab实现QRBiTCN分位数回归双向时间卷积神经网络注意力机制时序区间预测。

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  绘图
figure
fill([1 : M, M : -1 : 1], [L_sim1{1}, L_sim1{end}(end : -1 : 1)], ...
    'r', 'FaceColor', [1, 0.8, 0.8], 'EdgeColor', 'none')
hold on 
plot(1 : M, T_train, '-', 1 : M, T_sim1', '-', 'LineWidth', 0.3)
legend('95%的置信区间', '真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'QRCNN-BiGRU-Attention训练集预测结果对比'; ['RMSE = ' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
fill([1 : N, N : -1 : 1], [L_sim2{1}, L_sim2{end}(end : -1 : 1)], ...
    'r', 'FaceColor', [1, 0.8, 0.8], 'EdgeColor', 'none')
hold on 
plot(1 : N, T_test, '-', 1 : N, T_sim2', '-', 'LineWidth', 1)
legend('95%的置信区间', '真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'QRCNN-BiGRU-Attention测试集预测结果对比'; ['RMSE = ' num2str(error2)]};
title(string)
xlim([1, N])
grid

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340


http://www.kler.cn/a/589032.html

相关文章:

  • Ubuntu 一站式初始化笔记
  • 【sql靶场】第13、14、17关-post提交报错注入保姆级教程
  • JVM常用概念之超态虚拟调用
  • 解析GNGGA数据,C语言单片机
  • AI是如何实现屏幕触控防水? 实测华为畅享70X
  • Redis监控:从睁眼瞎到千里眼的进化史
  • 【go语言圣经1.6】
  • 19.如何使用 pandas 处理大型 Excel 文件:并行读取工作表
  • pytorch小记(八):pytorch中有关于.detach()的浅显见解
  • PostgreSQL技术内幕26:PG聚合算子实现分析
  • 【VBA】excel获取股票实时行情(历史数据,基金数据下载)
  • 量子计算与医疗诊断的未来:超越传统的无限可能
  • 深度学习篇---Opencv中Haar级联分类器的自定义
  • Java 大视界 -- 基于 Java 的大数据机器学习模型的迁移学习应用与实践(129)
  • 五大基础算法——贪心算法
  • 各省水资源平台 水资源遥测终端机都用什么协议
  • CSS中绝对定位
  • 【报错问题】在visual studio 终端使用npm -v后报错禁止运行脚本怎么处理
  • 大三下找C++开发实习的感受分享
  • 网络通信(传输层协议:TCP/IP ,UDP):