FOC——Butterworth (巴特沃斯)数字滤波器(2025.03.18)
参考链接1: [DSP] Butterworth (巴特沃斯)数字滤波器设计参考
参考链接2: 陈佩青《数字信号处理教程》
参考链接3: ButterWorthFIlter(巴特沃斯滤波器)
在此感谢各位前辈大佬的总结,写这个只是为了记录学习大佬资料的过程,内容基本都是搬运的大佬博客,觉着有用自己搞过来自己记一下,如果有大佬觉着我搬过来不好,联系我删。
FOC——Butterworth (巴特沃斯)数字滤波器(2025.03.18)
- 1、什么是Butterworth (巴特沃斯)数字滤波器?
- 2、滤波器设计
- 2.1、低通滤波器
- 2.1.1 1阶Butterworth LPF设计
- 2.1.1.1 1阶Butterworth LPF设计举例
- 2.1.1.2 1阶Butterworth LPF设计Matlab验证
- 2.1.2 2阶Butterworth LPF设计
- 2.1.2.1 2阶Butterworth LPF设计举例
- 2.1.2.2 2阶Butterworth LPF设计Matlab验证
- 2.2、高通滤波器
- 2.2.1 1阶Butterworth HPF设计
- 2.2.1.1 1阶Butterworth HPF设计举例
- 2.2.1.2 1阶Butterworth HPF设计Matlab验证
- 2.2.2 2阶Butterworth HPF设计
- 2.2.2.1 2阶Butterworth HPF设计举例
- 2.2.2.2 2阶Butterworth HPF设计Matlab验证
- 2.3、带通滤波器
- 2.3.1 2阶Butterworth 带通滤波器设计
- 2.3.1.1 2阶Butterworth 带通滤波器设计举例
- 2.3.1.2 2阶Butterworth 带通滤波器设计Matlab验证
- 2.3.2 2阶Butterworth 带通滤波器设计(仅个人推测,应该是错的)
- 2.3.2.1 2阶Butterworth 带通滤波器设计举例(仅个人推测,应该是错的)
- 2.3.2.2 2阶Butterworth 带通滤波器设计Matlab验证
- 2.4、带阻滤波器(待推算完善)
- 2.4.1 2阶Butterworth 带阻滤波器设计(待推算完善)
- 2.4.1.1 2阶Butterworth 带阻滤波器设计举例(待推算完善)
- 2.4.2.2 2阶Butterworth 带阻滤波器设计Matlab验证
1、什么是Butterworth (巴特沃斯)数字滤波器?
在嵌入式音频产品开发过程中经常会到LPF(Low Pass Filter 低通滤波器)和HPF(High Pass Filter 高通滤波器),一般情况下都是离线用工具(如: Matlab)设计好滤波器的参数(Filter Coefficients)再应用到产品中去。但有些状况下需要用户自己根据需求来实时(Real-time)调整Filter Frequency Response (滤波器频率响应),这种情形下就需要在嵌入式系统中实时根据客户的设定需求来产生相应的Filter Coefficients。
巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。 在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。巴特沃斯滤波器的振幅对角频率单调下降,并且也是唯一的无论阶数,振幅对角频率曲线都保持同样的形状的滤波器。只不过滤波器阶数越高,在阻频带振幅衰减速度越快。其他滤波器高阶的振幅对角频率图和低阶数的振幅对角频率有不同的形状。
由图可见,当N趋于无穷时,将会得到一个理想的低通滤波器。
归一化原型(低通)系统函数的一般形式是:
H
a
n
(
s
)
=
d
0
a
0
+
a
1
∗
s
1
+
a
2
∗
s
2
+
.
.
.
+
a
N
∗
s
N
H_{an}(s)=\frac{d_0}{a_0+a_1*s^1+a_2*s^2+...+a_N*s^N}
Han(s)=a0+a1∗s1+a2∗s2+...+aN∗sNd0一般情况下希望保持通带增益为0dB,因此上式中的
d
0
=
a
0
d_0=a_0
d0=a0。
对于上式,当
a
0
=
a
N
=
1
a_0=a_N=1
a0=aN=1情况下可得到归一化的巴特沃斯多项式(分母部分):
n=1时——
H
a
n
(
s
)
=
s
+
1
H_{an}(s)=s+1
Han(s)=s+1
n=2时——
H
a
n
(
s
)
=
s
2
+
1.414
s
+
1
H_{an}(s)=s^2+1.414s+1
Han(s)=s2+1.414s+1
n=3时——
H
a
n
(
s
)
=
(
s
+
1
)(
s
2
+
s
+
1
)
H_{an}(s)=(s+1)(s^2+s+1)
Han(s)=(s+1)(s2+s+1)
n=4时——
H
a
n
(
s
)
=
(
s
2
+
0.7654
s
+
1
)(
s
2
+
1.8478
s
+
1
)
H_{an}(s)=(s^2+0.7654s+1)(s^2+1.8478s+1)
Han(s)=(s2+0.7654s+1)(s2+1.8478s+1)
n=5时——
H
a
n
(
s
)
=
(
s
+
1
)(
s
2
+
0.6180
s
+
1
)(
s
2
+
1.6180
s
+
1
)
H_{an}(s)=(s+1)(s^2+0.6180s+1)(s^2+1.6180s+1)
Han(s)=(s+1)(s2+0.6180s+1)(s2+1.6180s+1)
n=6时——
H
a
n
(
s
)
=
(
s
2
+
0.5176
s
+
1
)(
s
2
+
1.414
s
+
1
)(
s
2
+
1.9318
s
+
1
)
H_{an}(s)=(s^2+0.5176s+1)(s^2+1.414s+1)(s^2+1.9318s+1)
Han(s)=(s2+0.5176s+1)(s2+1.414s+1)(s2+1.9318s+1)
n=7时——
H
a
n
(
s
)
=
(
s
+
1
)(
s
2
+
0.4450
s
+
1
)(
s
2
+
1.247
s
+
1
)(
s
2
+
1.8022
s
+
1
)
H_{an}(s)=(s+1)(s^2+0.4450s+1)(s^2+1.247s+1)(s^2+1.8022s+1)
Han(s)=(s+1)(s2+0.4450s+1)(s2+1.247s+1)(s2+1.8022s+1)
n=8时——
H
a
n
(
s
)
=
(
s
2
+
0.3986
s
+
1
)(
s
2
+
1.111
s
+
1
)(
s
2
+
1.6630
s
+
1
)(
s
2
+
1.9622
s
+
1
)
H_{an}(s)=(s^2+0.3986s+1)(s^2+1.111s+1)(s^2+1.6630s+1)(s^2+1.9622s+1)
Han(s)=(s2+0.3986s+1)(s2+1.111s+1)(s2+1.6630s+1)(s2+1.9622s+1)
由此可以得到
d
0
=
a
0
=
a
N
=
1
d_0=a_0=a_N=1
d0=a0=aN=1时的巴特沃斯多项式展开的系数表(陈佩青《数字信号处理教程》第二版266页 表6-4):
上面的表达式是s域的表达式。
下面是变化到z域的方法。
2、滤波器设计
2.1、低通滤波器
s
=
1
C
1
∗
1
−
z
−
1
1
+
z
−
1
s=\frac{1}{C_1}*\frac{1-z^{-1}}{1+z^{-1}}
s=C11∗1+z−11−z−1
C
1
=
Ω
c
∗
t
a
n
ω
2
C_1=Ω_c*tan\frac{ω}{2}
C1=Ωc∗tan2ω
Ω
c
=
1
Ω_c=1
Ωc=1
ω
c
=
2
π
f
c
f
s
ω_c=\frac{2πf_c}{f_s}
ωc=fs2πfc
其中为
f
s
f_s
fs采样频率,
f
c
f_c
fc为-3dB频率点
2.1.1 1阶Butterworth LPF设计
H
(
s
)
=
1
s
+
1
H(s)=\frac{1}{s+1}
H(s)=s+11将
s
=
1
C
1
∗
1
−
z
−
1
1
+
z
−
1
s=\frac{1}{C_1}*\frac{1-z^{-1}}{1+z^{-1}}
s=C11∗1+z−11−z−1代入上式可得:
H
(
z
)
=
1
1
C
1
∗
1
−
z
−
1
1
+
z
−
1
+
1
=
C
1
+
C
1
z
−
1
1
−
z
−
1
+
C
1
+
C
1
z
−
1
=
C
1
+
C
1
z
−
1
(
1
+
C
1
)
+
(
C
1
−
1
)
z
−
1
=
C
1
(
C
1
+
1
)
+
C
1
(
C
1
+
1
)
z
−
1
1
+
C
1
−
1
C
1
+
1
z
−
1
\begin{aligned} H(z)=\frac{1}{\frac{1}{C_1}*\frac{1-z^{-1}}{1+z^{-1}}+1}=\frac{C_1+C_1z^{-1}}{1-z^{-1}+C_1+C_1z^{-1}} & =\frac{C_1+C_1z^{-1}}{(1+C_1)+(C_1-1)z^{-1}}\\ & =\frac{\frac{C_1}{(C_1+1)}+\frac{C_1}{(C_1+1)}z^{-1}}{1+\frac{C_1-1}{C_1+1}z^{-1}} \end{aligned}
H(z)=C11∗1+z−11−z−1+11=1−z−1+C1+C1z−1C1+C1z−1=(1+C1)+(C1−1)z−1C1+C1z−1=1+C1+1C1−1z−1(C1+1)C1+(C1+1)C1z−1
由上式可得
B
0
=
B
1
=
C
1
C
1
+
1
,
B
2
=
0
,
A
0
=
1
,
A
1
=
C
1
C
1
+
1
,
A
2
=
0
B_0=B_1=\frac{C_1}{C_1+1},B_2=0,A_0=1,A_1=\frac{C_1}{C_1+1},A_2=0
B0=B1=C1+1C1,B2=0,A0=1,A1=C1+1C1,A2=0。
2.1.1.1 1阶Butterworth LPF设计举例
设定fs=44100Hz, fc=1000Hz 计算1阶Butterworth LPF filter coefficients
因为归一化所以
Ω
c
=
1
Ω_c=1
Ωc=1,所以代入
C
1
=
Ω
c
∗
t
a
n
ω
2
C_1=Ω_c*tan\frac{ω}{2}
C1=Ωc∗tan2ω可得:
C
1
=
1
∗
t
a
n
2
∗
π
∗
f
c
f
s
2
=
1
∗
t
a
n
2
∗
π
∗
1000
44100
2
=
0.071358
C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358
C1=1∗tan2fs2∗π∗fc=1∗tan2441002∗π∗1000=0.071358代入
B
0
=
B
1
=
C
1
C
1
+
1
,
B
2
=
0
,
A
0
=
1
,
A
1
=
C
1
C
1
+
1
,
A
2
=
0
B_0=B_1=\frac{C_1}{C_1+1},B_2=0,A_0=1,A_1=\frac{C_1}{C_1+1},A_2=0
B0=B1=C1+1C1,B2=0,A0=1,A1=C1+1C1,A2=0可求出:
B
0
=
B
1
=
C
1
C
1
+
1
=
0.06660578
B_0=B_1=\frac{C_1}{C_1+1}=0.06660578
B0=B1=C1+1C1=0.06660578
B
2
=
0
B_2=0
B2=0
A
0
=
1
A_0=1
A0=1
A
1
=
C
1
C
1
+
1
=
−
0.866788439
A_1=\frac{C_1}{C_1+1}=-0.866788439
A1=C1+1C1=−0.866788439
A
2
=
0
A_2=0
A2=0
2.1.1.2 1阶Butterworth LPF设计Matlab验证
2.1.2 2阶Butterworth LPF设计
H
(
s
)
=
1
1
+
1.414
s
+
s
2
H(s)=\frac{1}{1+1.414s+s^2}
H(s)=1+1.414s+s21将
s
=
1
C
1
∗
1
−
z
−
1
1
+
z
−
1
s=\frac{1}{C_1}*\frac{1-z^{-1}}{1+z^{-1}}
s=C11∗1+z−11−z−1代入上式可得:
H
(
z
)
=
C
1
2
+
2
C
1
2
z
−
1
+
C
1
2
z
−
2
(
C
1
2
+
1.414
C
1
+
1
)
+
(
2
C
1
2
−
2
)
z
−
1
+
(
C
1
2
−
1.414
C
1
+
1
)
z
−
1
\begin{aligned} H(z)=\frac{C_1^2+2C_1^2z^{-1}+C_1^2z^{-2}}{(C_1^2+1.414C_1+1)+(2C_1^2-2)z^{-1}+(C_1^2-1.414C_1+1)z^{-1}} \end{aligned}
H(z)=(C12+1.414C1+1)+(2C12−2)z−1+(C12−1.414C1+1)z−1C12+2C12z−1+C12z−2
令
G
=
1
C
1
2
+
1.414
C
1
+
1
,其中
C
1
=
t
a
n
ω
c
2
,
ω
c
=
2
π
f
c
f
s
G=\frac{1}{C_1^2+1.414C_1+1},其中C_1=tan\frac{ω_c}{2},ω_c=\frac{2πf_c}{f_s}
G=C12+1.414C1+11,其中C1=tan2ωc,ωc=fs2πfc。
可得:
B
0
=
G
C
1
2
,
B
1
=
2
B
0
,
B
2
=
B
0
,
A
0
=
1
,
A
1
=
G
(
2
C
1
2
−
2
)
,
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
B_0=GC_1^2,B_1=2B_0,B_2=B_0,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1)
B0=GC12,B1=2B0,B2=B0,A0=1,A1=G(2C12−2),A2=G(C12−1.414C1+1)。
2.1.2.1 2阶Butterworth LPF设计举例
设定fs=44100Hz, fc=1000Hz 计算2阶Butterworth LPF filter coefficients
因为归一化所以
Ω
c
=
1
Ω_c=1
Ωc=1,所以代入
C
1
=
Ω
c
∗
t
a
n
ω
2
C_1=Ω_c*tan\frac{ω}{2}
C1=Ωc∗tan2ω可得:
C
1
=
1
∗
t
a
n
2
∗
π
∗
f
c
f
s
2
=
1
∗
t
a
n
2
∗
π
∗
1000
44100
2
=
0.071358
C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358
C1=1∗tan2fs2∗π∗fc=1∗tan2441002∗π∗1000=0.071358
G
=
1
C
1
2
+
1.414
C
1
+
1
=
1
0.07135
8
2
+
1.414
∗
0.071358
+
1
=
0.90415
G=\frac{1}{C_1^2+1.414C_1+1}=\frac{1}{0.071358^2+1.414*0.071358+1}=0.90415
G=C12+1.414C1+11=0.0713582+1.414∗0.071358+11=0.90415代入
B
0
=
G
C
1
2
,
B
1
=
2
B
0
,
B
2
=
B
0
,
A
0
=
1
,
A
1
=
G
(
2
C
1
2
−
2
)
,
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
B_0=GC_1^2,B_1=2B_0,B_2=B_0,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1)
B0=GC12,B1=2B0,B2=B0,A0=1,A1=G(2C12−2),A2=G(C12−1.414C1+1)可求出:
B
0
=
G
C
1
2
=
0.90415
∗
0.07135
8
2
=
0.004603998476
B_0=GC_1^2=0.90415*0.071358^2=0.004603998476
B0=GC12=0.90415∗0.0713582=0.004603998476
B
1
=
2
B
0
=
2
∗
0.004603998476
=
0.009207996951
B_1=2B_0=2*0.004603998476=0.009207996951
B1=2B0=2∗0.004603998476=0.009207996951
B
2
=
B
0
=
0.004603998476
B_2=B_0=0.004603998476
B2=B0=0.004603998476
A
0
=
1
A_0=1
A0=1
A
1
=
G
(
2
C
1
2
−
2
)
=
0.90415
∗
(
2
∗
0.07135
8
2
−
2
)
=
−
1.799096409760
A_1=G(2C_1^2-2)=0.90415*(2*0.071358^2-2)=-1.799096409760
A1=G(2C12−2)=0.90415∗(2∗0.0713582−2)=−1.799096409760
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
=
0.90415
∗
(
0.07135
8
2
−
1.414
∗
0.071358
+
1
=
0.817512403663
)
A_2=G(C_1^2-1.414C_1+1)=0.90415*(0.071358^2-1.414*0.071358+1=0.817512403663)
A2=G(C12−1.414C1+1)=0.90415∗(0.0713582−1.414∗0.071358+1=0.817512403663)
2.1.2.2 2阶Butterworth LPF设计Matlab验证
2.2、高通滤波器
s = C 1 ∗ 1 + z − 1 1 − z − 1 s={C_1}*\frac{1+z^{-1}}{1-z^{-1}} s=C1∗1−z−11+z−1 C 1 = Ω c ∗ t a n ω 2 C_1=Ω_c*tan\frac{ω}{2} C1=Ωc∗tan2ω Ω c = 1 Ω_c=1 Ωc=1
2.2.1 1阶Butterworth HPF设计
H
(
s
)
=
1
s
+
1
H(s)=\frac{1}{s+1}
H(s)=s+11将
s
=
C
1
∗
1
+
z
−
1
1
−
z
−
1
s=C_1*\frac{1+z^{-1}}{1-z^{-1}}
s=C1∗1−z−11+z−1代入上式可得:
H
(
z
)
=
1
−
z
−
1
(
C
1
+
1
)
+
(
C
1
−
1
)
z
−
1
\begin{aligned} H(z)=\frac{1-z^{-1}}{(C_1+1)+(C_1-1)z^{-1}} \end{aligned}
H(z)=(C1+1)+(C1−1)z−11−z−1
令
G
=
1
C
1
+
1
,其中
C
1
=
t
a
n
ω
c
2
,
ω
c
=
2
π
f
c
f
s
G=\frac{1}{C_1+1},其中C_1=tan\frac{ω_c}{2},ω_c=\frac{2πf_c}{f_s}
G=C1+11,其中C1=tan2ωc,ωc=fs2πfc。
可得:
B
0
=
G
,
B
1
=
−
B
0
,
B
2
=
0
,
A
0
=
1
,
A
1
=
G
(
C
1
−
1
)
,
A
2
=
0
B_0=G,B_1=-B_0,B_2=0,A_0=1,A_1=G(C_1-1),A_2=0
B0=G,B1=−B0,B2=0,A0=1,A1=G(C1−1),A2=0。
2.2.1.1 1阶Butterworth HPF设计举例
设定fs=44100Hz, fc=1000Hz 计算1阶Butterworth HPF filter coefficients
因为归一化所以
Ω
c
=
1
Ω_c=1
Ωc=1,所以代入
C
1
=
Ω
c
∗
t
a
n
ω
2
C_1=Ω_c*tan\frac{ω}{2}
C1=Ωc∗tan2ω可得:
C
1
=
1
∗
t
a
n
2
∗
π
∗
f
c
f
s
2
=
1
∗
t
a
n
2
∗
π
∗
1000
44100
2
=
0.071358
C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358
C1=1∗tan2fs2∗π∗fc=1∗tan2441002∗π∗1000=0.071358
G
=
1
C
1
+
1
=
G
=
1
0.071358
+
1
=
0.93339421975
G=\frac{1}{C_1+1}=G=\frac{1}{0.071358+1}=0.93339421975
G=C1+11=G=0.071358+11=0.93339421975代入
B
0
=
G
,
B
1
=
−
B
0
,
B
2
=
0
,
A
0
=
1
,
A
1
=
G
(
C
1
−
1
)
,
A
2
=
0
B_0=G,B_1=-B_0,B_2=0,A_0=1,A_1=G(C_1-1),A_2=0
B0=G,B1=−B0,B2=0,A0=1,A1=G(C1−1),A2=0可求出:
B
0
=
G
=
0.93339421975
B_0=G=0.93339421975
B0=G=0.93339421975
B
1
=
−
B
0
=
−
0.93339421975
B_1=-B_0=-0.93339421975
B1=−B0=−0.93339421975
B
2
=
0
B_2=0
B2=0
A
0
=
1
A_0=1
A0=1
A
1
=
G
(
C
1
−
1
)
=
0.93339421975
∗
(
0.071358
−
1
)
=
−
0.866788439500
A_1=G(C_1-1)=0.93339421975*(0.071358-1)=-0.866788439500
A1=G(C1−1)=0.93339421975∗(0.071358−1)=−0.866788439500
A
2
=
0
A_2=0
A2=0。
2.2.1.2 1阶Butterworth HPF设计Matlab验证
2.2.2 2阶Butterworth HPF设计
H
(
s
)
=
1
1
+
1.414
s
+
s
2
H(s)=\frac{1}{1+1.414s+s^2}
H(s)=1+1.414s+s21将
s
=
C
1
∗
1
+
z
−
1
1
−
z
−
1
s=C_1*\frac{1+z^{-1}}{1-z^{-1}}
s=C1∗1−z−11+z−1代入上式可得:
H
(
z
)
=
1
−
2
z
−
1
+
z
−
2
(
C
1
2
+
1.414
C
1
+
1
)
+
(
2
C
1
2
−
2
)
z
−
1
+
(
C
1
2
−
1.414
C
1
+
1
)
z
−
1
\begin{aligned} H(z)=\frac{1-2z^{-1}+z^{-2}}{(C_1^2+1.414C_1+1)+(2C_1^2-2)z^{-1}+(C_1^2-1.414C_1+1)z^{-1}} \end{aligned}
H(z)=(C12+1.414C1+1)+(2C12−2)z−1+(C12−1.414C1+1)z−11−2z−1+z−2
令
G
=
1
C
1
2
+
1.414
C
1
+
1
,其中
C
1
=
t
a
n
ω
c
2
,
ω
c
=
2
π
f
c
f
s
G=\frac{1}{C_1^2+1.414C_1+1},其中C_1=tan\frac{ω_c}{2},ω_c=\frac{2πf_c}{f_s}
G=C12+1.414C1+11,其中C1=tan2ωc,ωc=fs2πfc。
可得:
B
0
=
G
,
B
1
=
−
2
G
,
B
2
=
G
,
A
0
=
1
,
A
1
=
G
(
2
C
1
2
−
2
)
,
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
B_0=G,B_1=-2G,B_2=G,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1)
B0=G,B1=−2G,B2=G,A0=1,A1=G(2C12−2),A2=G(C12−1.414C1+1)。
2.2.2.1 2阶Butterworth HPF设计举例
设定fs=44100Hz, fc=1000Hz 计算2阶Butterworth HPF filter coefficients
因为归一化所以
Ω
c
=
1
Ω_c=1
Ωc=1,所以代入
C
1
=
Ω
c
∗
t
a
n
ω
2
C_1=Ω_c*tan\frac{ω}{2}
C1=Ωc∗tan2ω可得:
C
1
=
1
∗
t
a
n
2
∗
π
∗
f
c
f
s
2
=
1
∗
t
a
n
2
∗
π
∗
1000
44100
2
=
0.071358
C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358
C1=1∗tan2fs2∗π∗fc=1∗tan2441002∗π∗1000=0.071358
G
=
1
C
1
2
+
1.414
C
1
+
1
=
1
0.07135
8
2
+
1.414
∗
0.071358
+
1
=
0.904152203356
G=\frac{1}{C_1^2+1.414C_1+1}=\frac{1}{0.071358^2+1.414*0.071358+1}=0.904152203356
G=C12+1.414C1+11=0.0713582+1.414∗0.071358+11=0.904152203356代入
B
0
=
G
,
B
1
=
−
2
G
,
B
2
=
G
,
A
0
=
1
,
A
1
=
G
(
2
C
1
2
−
2
)
,
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
B_0=G,B_1=-2G,B_2=G,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1)
B0=G,B1=−2G,B2=G,A0=1,A1=G(2C12−2),A2=G(C12−1.414C1+1)可求出:
B
0
=
G
=
0.904152203356
B_0=G=0.904152203356
B0=G=0.904152203356
B
1
=
−
2
G
=
−
1.808304406712
B_1=-2G=-1.808304406712
B1=−2G=−1.808304406712
B
2
=
G
=
0.904152203356
B_2=G=0.904152203356
B2=G=0.904152203356
A
0
=
1
A_0=1
A0=1
A
1
=
G
(
2
C
1
2
−
2
)
=
0.904152203356
∗
(
2
∗
0.07135
8
2
−
2
)
=
−
1.799096409760
A_1=G(2C_1^2-2)=0.904152203356*(2*0.071358^2-2)=-1.799096409760
A1=G(2C12−2)=0.904152203356∗(2∗0.0713582−2)=−1.799096409760
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
=
0.904152203356
∗
(
0.07135
8
2
−
1.414
∗
0.071358
+
1
)
=
0.817510981662
A_2=G(C_1^2-1.414C_1+1)=0.904152203356*(0.071358^2-1.414*0.071358+1)=0.817510981662
A2=G(C12−1.414C1+1)=0.904152203356∗(0.0713582−1.414∗0.071358+1)=0.817510981662。
2.2.2.2 2阶Butterworth HPF设计Matlab验证
2.3、带通滤波器
s = D ∗ 1 − E z − 1 + z − 2 1 + z − 2 s=D*\frac{1-Ez^{-1}+z^{-2}}{1+z^{-2}} s=D∗1+z−21−Ez−1+z−2 Ω c = D ∗ c o s ω 0 − c o s ω s i n ω Ω_c=D*\frac{cosω_0-cosω}{sinω} Ωc=D∗sinωcosω0−cosω其中 D = Ω ∗ c o t ( ω 2 − ω 1 2 ) D=Ω*cot(\frac{ω_2-ω_1}{2}) D=Ω∗cot(2ω2−ω1) E = 2 c o s ( ω 2 + ω 1 2 ) c o s ( ω 2 − ω 1 2 ) = 2 c o s ω 0 E=\frac{2cos(\frac{ω_2+ω_1}{2})}{cos(\frac{ω_2-ω_1}{2})}=2cosω_0 E=cos(2ω2−ω1)2cos(2ω2+ω1)=2cosω0
2.3.1 2阶Butterworth 带通滤波器设计
H
(
s
)
=
1
s
+
1
(这里没搞懂为啥用
1
阶的表达式计算,但是能跟
m
a
t
l
a
b
结果对得上,存疑!)
H(s)=\frac{1}{s+1}(这里没搞懂为啥用1阶的表达式计算,但是能跟matlab结果对得上,存疑!)
H(s)=s+11(这里没搞懂为啥用1阶的表达式计算,但是能跟matlab结果对得上,存疑!)将
s
=
D
∗
1
−
E
z
−
1
+
z
−
2
1
+
z
−
2
s=D*\frac{1-Ez^{-1}+z^{-2}}{1+z^{-2}}
s=D∗1+z−21−Ez−1+z−2代入上式可得:
H
(
z
)
=
1
−
z
−
2
(
1
+
D
)
−
D
E
z
−
1
+
(
D
−
1
)
z
−
2
\begin{aligned} H(z)=\frac{1-z^{-2}}{(1+D)-DEz^{-1}+(D-1)z^{-2}} \end{aligned}
H(z)=(1+D)−DEz−1+(D−1)z−21−z−2
令
G
=
1
1
+
D
,其中
D
=
Ω
∗
c
o
t
(
ω
2
−
ω
1
2
)
,
E
=
2
c
o
s
(
ω
2
+
ω
1
2
)
c
o
s
(
ω
2
−
ω
1
2
)
=
2
c
o
s
ω
0
G=\frac{1}{1+D},其中D=Ω*cot(\frac{ω_2-ω_1}{2}),E=\frac{2cos(\frac{ω_2+ω_1}{2})}{cos(\frac{ω_2-ω_1}{2})}=2cosω_0
G=1+D1,其中D=Ω∗cot(2ω2−ω1),E=cos(2ω2−ω1)2cos(2ω2+ω1)=2cosω0。
可得:
B
0
=
G
,
B
1
=
0
,
B
2
=
−
G
,
A
0
=
1
,
A
1
=
−
G
D
E
,
A
2
=
G
(
D
−
1
)
B_0=G,B_1=0,B_2=-G,A_0=1,A_1=-GDE,A_2=G(D-1)
B0=G,B1=0,B2=−G,A0=1,A1=−GDE,A2=G(D−1)。
2.3.1.1 2阶Butterworth 带通滤波器设计举例
设定fs=44100Hz, f1=300Hz, f2=350Hz 计算2阶Butterworth 带通滤波器
因为归一化所以
Ω
c
=
1
Ω_c=1
Ωc=1,所以代入
D
=
Ω
∗
c
o
t
(
ω
2
−
ω
1
2
)
D=Ω*cot(\frac{ω_2-ω_1}{2})
D=Ω∗cot(2ω2−ω1),其中
w
1
=
2
π
f
1
f
s
w_1=\frac{2πf_1}{fs}
w1=fs2πf1,
w
2
=
2
π
f
2
f
s
w_2=\frac{2πf_2}{fs}
w2=fs2πf2可得:
w
1
=
2
π
f
1
f
s
=
2
π
∗
300
44100
=
0.042742757
w_1=\frac{2πf_1}{fs}=\frac{2π*300}{44100}=0.042742757
w1=fs2πf1=441002π∗300=0.042742757
w
2
=
2
π
f
2
f
s
=
2
π
∗
350
44100
=
0.04986655
w_2=\frac{2πf_2}{fs}=\frac{2π*350}{44100}=0.04986655
w2=fs2πf2=441002π∗350=0.04986655
D
=
Ω
∗
c
o
t
(
ω
2
−
ω
1
2
)
=
1
∗
c
o
t
(
0.04986655
−
0.042742757
2
)
=
280.7481323
D=Ω*cot(\frac{ω_2-ω_1}{2})=1*cot(\frac{0.04986655-0.042742757}{2})=280.7481323
D=Ω∗cot(2ω2−ω1)=1∗cot(20.04986655−0.042742757)=280.7481323
G
=
1
D
+
1
=
1
280.7481323
+
1
=
0.003549269
G=\frac{1}{D+1}=\frac{1}{280.7481323+1}=0.003549269
G=D+11=280.7481323+11=0.003549269
E
=
2
c
o
s
(
ω
2
+
ω
1
2
)
c
o
s
(
ω
2
−
ω
1
2
)
=
2
c
o
s
(
0.04986655
+
0.042742757
2
)
c
o
s
(
0.04986655
−
0.042742757
2
)
=
1.997868936
=
2
c
o
s
ω
0
E=\frac{2cos(\frac{ω_2+ω_1}{2})}{cos(\frac{ω_2-ω_1}{2})}=\frac{2cos(\frac{0.04986655+0.042742757}{2})}{cos(\frac{0.04986655-0.042742757}{2})}=1.997868936=2cosω_0
E=cos(2ω2−ω1)2cos(2ω2+ω1)=cos(20.04986655−0.042742757)2cos(20.04986655+0.042742757)=1.997868936=2cosω0代入
B
0
=
G
,
B
1
=
0
,
B
2
=
−
G
,
A
0
=
1
,
A
1
=
−
G
D
E
,
A
2
=
G
(
D
−
1
)
B_0=G,B_1=0,B_2=-G,A_0=1,A_1=-GDE,A_2=G(D-1)
B0=G,B1=0,B2=−G,A0=1,A1=−GDE,A2=G(D−1)可求出:
B
0
=
G
=
0.003549269
B_0=G=0.003549269
B0=G=0.003549269
B
1
=
0
B_1=0
B1=0
B
2
=
−
G
=
−
0.003549269
B_2=-G=-0.003549269
B2=−G=−0.003549269
A
0
=
1
A_0=1
A0=1
A
1
=
−
G
D
E
=
−
0.003549269
∗
280.7481323
∗
1.997868936
=
−
1.990777961
A_1=-GDE=-0.003549269*280.7481323*1.997868936=-1.990777961
A1=−GDE=−0.003549269∗280.7481323∗1.997868936=−1.990777961
A
2
=
G
(
D
−
1
)
=
0.003549269
∗
(
280.7481323
−
1
)
=
0.992901461
A_2=G(D-1)=0.003549269*(280.7481323-1)=0.992901461
A2=G(D−1)=0.003549269∗(280.7481323−1)=0.992901461。
2.3.1.2 2阶Butterworth 带通滤波器设计Matlab验证
2.3.2 2阶Butterworth 带通滤波器设计(仅个人推测,应该是错的)
H
(
s
)
=
1
1
+
1.414
s
+
s
2
H(s)=\frac{1}{1+1.414s+s^2}
H(s)=1+1.414s+s21将
s
=
D
∗
1
−
E
z
−
1
+
z
−
2
1
+
z
−
2
s=D*\frac{1-Ez^{-1}+z^{-2}}{1+z^{-2}}
s=D∗1+z−21−Ez−1+z−2代入上式可得:
H
(
z
)
=
1
−
2
z
−
1
+
z
−
2
(
C
1
2
+
1.414
C
1
+
1
)
+
(
2
C
1
2
−
2
)
z
−
1
+
(
C
1
2
−
1.414
C
1
+
1
)
z
−
1
\begin{aligned} H(z)=\frac{1-2z^{-1}+z^{-2}}{(C_1^2+1.414C_1+1)+(2C_1^2-2)z^{-1}+(C_1^2-1.414C_1+1)z^{-1}} \end{aligned}
H(z)=(C12+1.414C1+1)+(2C12−2)z−1+(C12−1.414C1+1)z−11−2z−1+z−2
令
G
=
1
C
1
2
+
1.414
C
1
+
1
,其中
C
1
=
t
a
n
ω
c
2
,
ω
c
=
2
π
f
c
f
s
G=\frac{1}{C_1^2+1.414C_1+1},其中C_1=tan\frac{ω_c}{2},ω_c=\frac{2πf_c}{f_s}
G=C12+1.414C1+11,其中C1=tan2ωc,ωc=fs2πfc。
可得:
B
0
=
G
,
B
1
=
−
2
G
,
B
2
=
G
,
A
0
=
1
,
A
1
=
G
(
2
C
1
2
−
2
)
,
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
B_0=G,B_1=-2G,B_2=G,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1)
B0=G,B1=−2G,B2=G,A0=1,A1=G(2C12−2),A2=G(C12−1.414C1+1)。
2.3.2.1 2阶Butterworth 带通滤波器设计举例(仅个人推测,应该是错的)
设定fs=44100Hz, fc=1000Hz 计算2阶Butterworth HPF filter coefficients
因为归一化所以
Ω
c
=
1
Ω_c=1
Ωc=1,所以代入
C
1
=
Ω
c
∗
t
a
n
ω
2
C_1=Ω_c*tan\frac{ω}{2}
C1=Ωc∗tan2ω可得:
C
1
=
1
∗
t
a
n
2
∗
π
∗
f
c
f
s
2
=
1
∗
t
a
n
2
∗
π
∗
1000
44100
2
=
0.071358
C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358
C1=1∗tan2fs2∗π∗fc=1∗tan2441002∗π∗1000=0.071358
G
=
1
C
1
2
+
1.414
C
1
+
1
=
1
0.07135
8
2
+
1.414
∗
0.071358
+
1
=
0.904152203356
G=\frac{1}{C_1^2+1.414C_1+1}=\frac{1}{0.071358^2+1.414*0.071358+1}=0.904152203356
G=C12+1.414C1+11=0.0713582+1.414∗0.071358+11=0.904152203356代入
B
0
=
G
,
B
1
=
−
2
G
,
B
2
=
G
,
A
0
=
1
,
A
1
=
G
(
2
C
1
2
−
2
)
,
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
B_0=G,B_1=-2G,B_2=G,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1)
B0=G,B1=−2G,B2=G,A0=1,A1=G(2C12−2),A2=G(C12−1.414C1+1)可求出:
B
0
=
G
=
0.904152203356
B_0=G=0.904152203356
B0=G=0.904152203356
B
1
=
−
2
G
=
−
1.808304406712
B_1=-2G=-1.808304406712
B1=−2G=−1.808304406712
B
2
=
G
=
0.904152203356
B_2=G=0.904152203356
B2=G=0.904152203356
A
0
=
1
A_0=1
A0=1
A
1
=
G
(
2
C
1
2
−
2
)
=
0.904152203356
∗
(
2
∗
0.07135
8
2
−
2
)
=
−
1.799096409760
A_1=G(2C_1^2-2)=0.904152203356*(2*0.071358^2-2)=-1.799096409760
A1=G(2C12−2)=0.904152203356∗(2∗0.0713582−2)=−1.799096409760
A
2
=
G
(
C
1
2
−
1.414
C
1
+
1
)
=
0.904152203356
∗
(
0.07135
8
2
−
1.414
∗
0.071358
+
1
)
=
0.817510981662
A_2=G(C_1^2-1.414C_1+1)=0.904152203356*(0.071358^2-1.414*0.071358+1)=0.817510981662
A2=G(C12−1.414C1+1)=0.904152203356∗(0.0713582−1.414∗0.071358+1)=0.817510981662。
2.3.2.2 2阶Butterworth 带通滤波器设计Matlab验证
2.4、带阻滤波器(待推算完善)
s = D 1 ∗ 1 − z − 2 1 − E 1 z − 1 + z − 2 s=D_1*\frac{1-z^{-2}}{1-E_1z^{-1}+z^{-2}} s=D1∗1−E1z−1+z−21−z−2 Ω c = D 1 ∗ s i n ω c o s ω − c o s ω 0 Ω_c=D_1*\frac{sinω}{cosω-cosω_0} Ωc=D1∗cosω−cosω0sinω其中 D 1 = Ω c ∗ t a n ( ω 2 − ω 1 2 ) D_1=Ω_c*tan(\frac{ω_2-ω_1}{2}) D1=Ωc∗tan(2ω2−ω1) E 1 = 2 c o s ( ω 2 + ω 1 2 ) c o s ( ω 2 − ω 1 2 ) = 2 c o s ω 0 E_1=\frac{2cos(\frac{ω_2+ω_1}{2})}{cos(\frac{ω_2-ω_1}{2})}=2cosω_0 E1=cos(2ω2−ω1)2cos(2ω2+ω1)=2cosω0