当前位置: 首页 > article >正文

FOC——Butterworth (巴特沃斯)数字滤波器(2025.03.18)

参考链接1: [DSP] Butterworth (巴特沃斯)数字滤波器设计参考
参考链接2: 陈佩青《数字信号处理教程》
参考链接3: ButterWorthFIlter(巴特沃斯滤波器)

  在此感谢各位前辈大佬的总结,写这个只是为了记录学习大佬资料的过程,内容基本都是搬运的大佬博客,觉着有用自己搞过来自己记一下,如果有大佬觉着我搬过来不好,联系我删。

FOC——Butterworth (巴特沃斯)数字滤波器(2025.03.18)

  • 1、什么是Butterworth (巴特沃斯)数字滤波器?
  • 2、滤波器设计
    • 2.1、低通滤波器
      • 2.1.1 1阶Butterworth LPF设计
        • 2.1.1.1 1阶Butterworth LPF设计举例
        • 2.1.1.2 1阶Butterworth LPF设计Matlab验证
      • 2.1.2 2阶Butterworth LPF设计
        • 2.1.2.1 2阶Butterworth LPF设计举例
        • 2.1.2.2 2阶Butterworth LPF设计Matlab验证
    • 2.2、高通滤波器
      • 2.2.1 1阶Butterworth HPF设计
        • 2.2.1.1 1阶Butterworth HPF设计举例
        • 2.2.1.2 1阶Butterworth HPF设计Matlab验证
      • 2.2.2 2阶Butterworth HPF设计
        • 2.2.2.1 2阶Butterworth HPF设计举例
        • 2.2.2.2 2阶Butterworth HPF设计Matlab验证
    • 2.3、带通滤波器
      • 2.3.1 2阶Butterworth 带通滤波器设计
        • 2.3.1.1 2阶Butterworth 带通滤波器设计举例
        • 2.3.1.2 2阶Butterworth 带通滤波器设计Matlab验证
      • 2.3.2 2阶Butterworth 带通滤波器设计(仅个人推测,应该是错的)
        • 2.3.2.1 2阶Butterworth 带通滤波器设计举例(仅个人推测,应该是错的)
        • 2.3.2.2 2阶Butterworth 带通滤波器设计Matlab验证
    • 2.4、带阻滤波器(待推算完善)
      • 2.4.1 2阶Butterworth 带阻滤波器设计(待推算完善)
        • 2.4.1.1 2阶Butterworth 带阻滤波器设计举例(待推算完善)
        • 2.4.2.2 2阶Butterworth 带阻滤波器设计Matlab验证

1、什么是Butterworth (巴特沃斯)数字滤波器?

  在嵌入式音频产品开发过程中经常会到LPF(Low Pass Filter 低通滤波器)和HPF(High Pass Filter 高通滤波器),一般情况下都是离线用工具(如: Matlab)设计好滤波器的参数(Filter Coefficients)再应用到产品中去。但有些状况下需要用户自己根据需求来实时(Real-time)调整Filter Frequency Response (滤波器频率响应),这种情形下就需要在嵌入式系统中实时根据客户的设定需求来产生相应的Filter Coefficients。
  巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。 在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。巴特沃斯滤波器的振幅对角频率单调下降,并且也是唯一的无论阶数,振幅对角频率曲线都保持同样的形状的滤波器。只不过滤波器阶数越高,在阻频带振幅衰减速度越快。其他滤波器高阶的振幅对角频率图和低阶数的振幅对角频率有不同的形状。
在这里插入图片描述
  由图可见,当N趋于无穷时,将会得到一个理想的低通滤波器。

归一化原型(低通)系统函数的一般形式是:
H a n ( s ) = d 0 a 0 + a 1 ∗ s 1 + a 2 ∗ s 2 + . . . + a N ∗ s N H_{an}(s)=\frac{d_0}{a_0+a_1*s^1+a_2*s^2+...+a_N*s^N} Han(s)=a0+a1s1+a2s2+...+aNsNd0一般情况下希望保持通带增益为0dB,因此上式中的 d 0 = a 0 d_0=a_0 d0=a0
对于上式,当 a 0 = a N = 1 a_0=a_N=1 a0=aN=1情况下可得到归一化的巴特沃斯多项式(分母部分):
n=1时—— H a n ( s ) = s + 1 H_{an}(s)=s+1 Han(s)=s+1
n=2时—— H a n ( s ) = s 2 + 1.414 s + 1 H_{an}(s)=s^2+1.414s+1 Han(s)=s2+1.414s+1
n=3时—— H a n ( s ) = ( s + 1 )( s 2 + s + 1 ) H_{an}(s)=(s+1)(s^2+s+1) Han(s)=s+1)(s2+s+1
n=4时—— H a n ( s ) = ( s 2 + 0.7654 s + 1 )( s 2 + 1.8478 s + 1 ) H_{an}(s)=(s^2+0.7654s+1)(s^2+1.8478s+1) Han(s)=s2+0.7654s+1)(s2+1.8478s+1
n=5时—— H a n ( s ) = ( s + 1 )( s 2 + 0.6180 s + 1 )( s 2 + 1.6180 s + 1 ) H_{an}(s)=(s+1)(s^2+0.6180s+1)(s^2+1.6180s+1) Han(s)=s+1)(s2+0.6180s+1)(s2+1.6180s+1
n=6时—— H a n ( s ) = ( s 2 + 0.5176 s + 1 )( s 2 + 1.414 s + 1 )( s 2 + 1.9318 s + 1 ) H_{an}(s)=(s^2+0.5176s+1)(s^2+1.414s+1)(s^2+1.9318s+1) Han(s)=s2+0.5176s+1)(s2+1.414s+1)(s2+1.9318s+1
n=7时—— H a n ( s ) = ( s + 1 )( s 2 + 0.4450 s + 1 )( s 2 + 1.247 s + 1 )( s 2 + 1.8022 s + 1 ) H_{an}(s)=(s+1)(s^2+0.4450s+1)(s^2+1.247s+1)(s^2+1.8022s+1) Han(s)=s+1)(s2+0.4450s+1)(s2+1.247s+1)(s2+1.8022s+1
n=8时—— H a n ( s ) = ( s 2 + 0.3986 s + 1 )( s 2 + 1.111 s + 1 )( s 2 + 1.6630 s + 1 )( s 2 + 1.9622 s + 1 ) H_{an}(s)=(s^2+0.3986s+1)(s^2+1.111s+1)(s^2+1.6630s+1)(s^2+1.9622s+1) Han(s)=s2+0.3986s+1)(s2+1.111s+1)(s2+1.6630s+1)(s2+1.9622s+1

  由此可以得到 d 0 = a 0 = a N = 1 d_0=a_0=a_N=1 d0=a0=aN=1时的巴特沃斯多项式展开的系数表(陈佩青《数字信号处理教程》第二版266页 表6-4):
在这里插入图片描述

上面的表达式是s域的表达式。
下面是变化到z域的方法。

2、滤波器设计

2.1、低通滤波器

s = 1 C 1 ∗ 1 − z − 1 1 + z − 1 s=\frac{1}{C_1}*\frac{1-z^{-1}}{1+z^{-1}} s=C111+z11z1 C 1 = Ω c ∗ t a n ω 2 C_1=Ω_c*tan\frac{ω}{2} C1=Ωctan2ω Ω c = 1 Ω_c=1 Ωc=1 ω c = 2 π f c f s ω_c=\frac{2πf_c}{f_s} ωc=fs2πfc
其中为 f s f_s fs采样频率, f c f_c fc为-3dB频率点

2.1.1 1阶Butterworth LPF设计

H ( s ) = 1 s + 1 H(s)=\frac{1}{s+1} H(s)=s+11 s = 1 C 1 ∗ 1 − z − 1 1 + z − 1 s=\frac{1}{C_1}*\frac{1-z^{-1}}{1+z^{-1}} s=C111+z11z1代入上式可得:
H ( z ) = 1 1 C 1 ∗ 1 − z − 1 1 + z − 1 + 1 = C 1 + C 1 z − 1 1 − z − 1 + C 1 + C 1 z − 1 = C 1 + C 1 z − 1 ( 1 + C 1 ) + ( C 1 − 1 ) z − 1 = C 1 ( C 1 + 1 ) + C 1 ( C 1 + 1 ) z − 1 1 + C 1 − 1 C 1 + 1 z − 1 \begin{aligned} H(z)=\frac{1}{\frac{1}{C_1}*\frac{1-z^{-1}}{1+z^{-1}}+1}=\frac{C_1+C_1z^{-1}}{1-z^{-1}+C_1+C_1z^{-1}} & =\frac{C_1+C_1z^{-1}}{(1+C_1)+(C_1-1)z^{-1}}\\ & =\frac{\frac{C_1}{(C_1+1)}+\frac{C_1}{(C_1+1)}z^{-1}}{1+\frac{C_1-1}{C_1+1}z^{-1}} \end{aligned} H(z)=C111+z11z1+11=1z1+C1+C1z1C1+C1z1=(1+C1)+(C11)z1C1+C1z1=1+C1+1C11z1(C1+1)C1+(C1+1)C1z1
由上式可得 B 0 = B 1 = C 1 C 1 + 1 , B 2 = 0 , A 0 = 1 , A 1 = C 1 C 1 + 1 , A 2 = 0 B_0=B_1=\frac{C_1}{C_1+1},B_2=0,A_0=1,A_1=\frac{C_1}{C_1+1},A_2=0 B0=B1=C1+1C1,B2=0,A0=1,A1=C1+1C1,A2=0

2.1.1.1 1阶Butterworth LPF设计举例

  设定fs=44100Hz, fc=1000Hz 计算1阶Butterworth LPF filter coefficients
因为归一化所以 Ω c = 1 Ω_c=1 Ωc=1,所以代入 C 1 = Ω c ∗ t a n ω 2 C_1=Ω_c*tan\frac{ω}{2} C1=Ωctan2ω可得:
C 1 = 1 ∗ t a n 2 ∗ π ∗ f c f s 2 = 1 ∗ t a n 2 ∗ π ∗ 1000 44100 2 = 0.071358 C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358 C1=1tan2fs2πfc=1tan2441002π1000=0.071358代入 B 0 = B 1 = C 1 C 1 + 1 , B 2 = 0 , A 0 = 1 , A 1 = C 1 C 1 + 1 , A 2 = 0 B_0=B_1=\frac{C_1}{C_1+1},B_2=0,A_0=1,A_1=\frac{C_1}{C_1+1},A_2=0 B0=B1=C1+1C1,B2=0,A0=1,A1=C1+1C1,A2=0可求出:
B 0 = B 1 = C 1 C 1 + 1 = 0.06660578 B_0=B_1=\frac{C_1}{C_1+1}=0.06660578 B0=B1=C1+1C1=0.06660578 B 2 = 0 B_2=0 B2=0 A 0 = 1 A_0=1 A0=1 A 1 = C 1 C 1 + 1 = − 0.866788439 A_1=\frac{C_1}{C_1+1}=-0.866788439 A1=C1+1C1=0.866788439 A 2 = 0 A_2=0 A2=0

2.1.1.2 1阶Butterworth LPF设计Matlab验证

在这里插入图片描述

2.1.2 2阶Butterworth LPF设计

H ( s ) = 1 1 + 1.414 s + s 2 H(s)=\frac{1}{1+1.414s+s^2} H(s)=1+1.414s+s21 s = 1 C 1 ∗ 1 − z − 1 1 + z − 1 s=\frac{1}{C_1}*\frac{1-z^{-1}}{1+z^{-1}} s=C111+z11z1代入上式可得:
H ( z ) = C 1 2 + 2 C 1 2 z − 1 + C 1 2 z − 2 ( C 1 2 + 1.414 C 1 + 1 ) + ( 2 C 1 2 − 2 ) z − 1 + ( C 1 2 − 1.414 C 1 + 1 ) z − 1 \begin{aligned} H(z)=\frac{C_1^2+2C_1^2z^{-1}+C_1^2z^{-2}}{(C_1^2+1.414C_1+1)+(2C_1^2-2)z^{-1}+(C_1^2-1.414C_1+1)z^{-1}} \end{aligned} H(z)=(C12+1.414C1+1)+(2C122)z1+(C121.414C1+1)z1C12+2C12z1+C12z2
G = 1 C 1 2 + 1.414 C 1 + 1 ,其中 C 1 = t a n ω c 2 , ω c = 2 π f c f s G=\frac{1}{C_1^2+1.414C_1+1},其中C_1=tan\frac{ω_c}{2},ω_c=\frac{2πf_c}{f_s} G=C12+1.414C1+11,其中C1=tan2ωcωc=fs2πfc
可得: B 0 = G C 1 2 , B 1 = 2 B 0 , B 2 = B 0 , A 0 = 1 , A 1 = G ( 2 C 1 2 − 2 ) , A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) B_0=GC_1^2,B_1=2B_0,B_2=B_0,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1) B0=GC12B1=2B0B2=B0A0=1A1=G(2C122)A2=GC121.414C1+1)

2.1.2.1 2阶Butterworth LPF设计举例

  设定fs=44100Hz, fc=1000Hz 计算2阶Butterworth LPF filter coefficients
因为归一化所以 Ω c = 1 Ω_c=1 Ωc=1,所以代入 C 1 = Ω c ∗ t a n ω 2 C_1=Ω_c*tan\frac{ω}{2} C1=Ωctan2ω可得:
C 1 = 1 ∗ t a n 2 ∗ π ∗ f c f s 2 = 1 ∗ t a n 2 ∗ π ∗ 1000 44100 2 = 0.071358 C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358 C1=1tan2fs2πfc=1tan2441002π1000=0.071358 G = 1 C 1 2 + 1.414 C 1 + 1 = 1 0.07135 8 2 + 1.414 ∗ 0.071358 + 1 = 0.90415 G=\frac{1}{C_1^2+1.414C_1+1}=\frac{1}{0.071358^2+1.414*0.071358+1}=0.90415 G=C12+1.414C1+11=0.0713582+1.4140.071358+11=0.90415代入 B 0 = G C 1 2 , B 1 = 2 B 0 , B 2 = B 0 , A 0 = 1 , A 1 = G ( 2 C 1 2 − 2 ) , A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) B_0=GC_1^2,B_1=2B_0,B_2=B_0,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1) B0=GC12B1=2B0B2=B0A0=1A1=G(2C122)A2=GC121.414C1+1)可求出:
B 0 = G C 1 2 = 0.90415 ∗ 0.07135 8 2 = 0.004603998476 B_0=GC_1^2=0.90415*0.071358^2=0.004603998476 B0=GC12=0.904150.0713582=0.004603998476 B 1 = 2 B 0 = 2 ∗ 0.004603998476 = 0.009207996951 B_1=2B_0=2*0.004603998476=0.009207996951 B1=2B0=20.004603998476=0.009207996951 B 2 = B 0 = 0.004603998476 B_2=B_0=0.004603998476 B2=B0=0.004603998476 A 0 = 1 A_0=1 A0=1 A 1 = G ( 2 C 1 2 − 2 ) = 0.90415 ∗ ( 2 ∗ 0.07135 8 2 − 2 ) = − 1.799096409760 A_1=G(2C_1^2-2)=0.90415*(2*0.071358^2-2)=-1.799096409760 A1=G(2C122)=0.90415(20.07135822)=1.799096409760 A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) = 0.90415 ∗ ( 0.07135 8 2 − 1.414 ∗ 0.071358 + 1 = 0.817512403663 ) A_2=G(C_1^2-1.414C_1+1)=0.90415*(0.071358^2-1.414*0.071358+1=0.817512403663) A2=GC121.414C1+1)=0.90415(0.07135821.4140.071358+1=0.817512403663)

2.1.2.2 2阶Butterworth LPF设计Matlab验证

在这里插入图片描述

2.2、高通滤波器

s = C 1 ∗ 1 + z − 1 1 − z − 1 s={C_1}*\frac{1+z^{-1}}{1-z^{-1}} s=C11z11+z1 C 1 = Ω c ∗ t a n ω 2 C_1=Ω_c*tan\frac{ω}{2} C1=Ωctan2ω Ω c = 1 Ω_c=1 Ωc=1

2.2.1 1阶Butterworth HPF设计

H ( s ) = 1 s + 1 H(s)=\frac{1}{s+1} H(s)=s+11 s = C 1 ∗ 1 + z − 1 1 − z − 1 s=C_1*\frac{1+z^{-1}}{1-z^{-1}} s=C11z11+z1代入上式可得:
H ( z ) = 1 − z − 1 ( C 1 + 1 ) + ( C 1 − 1 ) z − 1 \begin{aligned} H(z)=\frac{1-z^{-1}}{(C_1+1)+(C_1-1)z^{-1}} \end{aligned} H(z)=C1+1+C11z11z1
G = 1 C 1 + 1 ,其中 C 1 = t a n ω c 2 , ω c = 2 π f c f s G=\frac{1}{C_1+1},其中C_1=tan\frac{ω_c}{2},ω_c=\frac{2πf_c}{f_s} G=C1+11,其中C1=tan2ωcωc=fs2πfc
可得: B 0 = G , B 1 = − B 0 , B 2 = 0 , A 0 = 1 , A 1 = G ( C 1 − 1 ) , A 2 = 0 B_0=G,B_1=-B_0,B_2=0,A_0=1,A_1=G(C_1-1),A_2=0 B0=GB1=B0B2=0A0=1A1=G(C11)A2=0

2.2.1.1 1阶Butterworth HPF设计举例

  设定fs=44100Hz, fc=1000Hz 计算1阶Butterworth HPF filter coefficients
因为归一化所以 Ω c = 1 Ω_c=1 Ωc=1,所以代入 C 1 = Ω c ∗ t a n ω 2 C_1=Ω_c*tan\frac{ω}{2} C1=Ωctan2ω可得:
C 1 = 1 ∗ t a n 2 ∗ π ∗ f c f s 2 = 1 ∗ t a n 2 ∗ π ∗ 1000 44100 2 = 0.071358 C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358 C1=1tan2fs2πfc=1tan2441002π1000=0.071358 G = 1 C 1 + 1 = G = 1 0.071358 + 1 = 0.93339421975 G=\frac{1}{C_1+1}=G=\frac{1}{0.071358+1}=0.93339421975 G=C1+11=G=0.071358+11=0.93339421975代入 B 0 = G , B 1 = − B 0 , B 2 = 0 , A 0 = 1 , A 1 = G ( C 1 − 1 ) , A 2 = 0 B_0=G,B_1=-B_0,B_2=0,A_0=1,A_1=G(C_1-1),A_2=0 B0=GB1=B0B2=0A0=1A1=G(C11)A2=0可求出:
B 0 = G = 0.93339421975 B_0=G=0.93339421975 B0=G=0.93339421975 B 1 = − B 0 = − 0.93339421975 B_1=-B_0=-0.93339421975 B1=B0=0.93339421975 B 2 = 0 B_2=0 B2=0 A 0 = 1 A_0=1 A0=1 A 1 = G ( C 1 − 1 ) = 0.93339421975 ∗ ( 0.071358 − 1 ) = − 0.866788439500 A_1=G(C_1-1)=0.93339421975*(0.071358-1)=-0.866788439500 A1=G(C11)=0.93339421975(0.0713581)=0.866788439500 A 2 = 0 A_2=0 A2=0

2.2.1.2 1阶Butterworth HPF设计Matlab验证

在这里插入图片描述

2.2.2 2阶Butterworth HPF设计

H ( s ) = 1 1 + 1.414 s + s 2 H(s)=\frac{1}{1+1.414s+s^2} H(s)=1+1.414s+s21 s = C 1 ∗ 1 + z − 1 1 − z − 1 s=C_1*\frac{1+z^{-1}}{1-z^{-1}} s=C11z11+z1代入上式可得:
H ( z ) = 1 − 2 z − 1 + z − 2 ( C 1 2 + 1.414 C 1 + 1 ) + ( 2 C 1 2 − 2 ) z − 1 + ( C 1 2 − 1.414 C 1 + 1 ) z − 1 \begin{aligned} H(z)=\frac{1-2z^{-1}+z^{-2}}{(C_1^2+1.414C_1+1)+(2C_1^2-2)z^{-1}+(C_1^2-1.414C_1+1)z^{-1}} \end{aligned} H(z)=(C12+1.414C1+1)+(2C122)z1+(C121.414C1+1)z112z1+z2
G = 1 C 1 2 + 1.414 C 1 + 1 ,其中 C 1 = t a n ω c 2 , ω c = 2 π f c f s G=\frac{1}{C_1^2+1.414C_1+1},其中C_1=tan\frac{ω_c}{2},ω_c=\frac{2πf_c}{f_s} G=C12+1.414C1+11,其中C1=tan2ωcωc=fs2πfc
可得: B 0 = G , B 1 = − 2 G , B 2 = G , A 0 = 1 , A 1 = G ( 2 C 1 2 − 2 ) , A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) B_0=G,B_1=-2G,B_2=G,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1) B0=GB1=2GB2=GA0=1A1=G(2C122)A2=GC121.414C1+1)

2.2.2.1 2阶Butterworth HPF设计举例

  设定fs=44100Hz, fc=1000Hz 计算2阶Butterworth HPF filter coefficients
因为归一化所以 Ω c = 1 Ω_c=1 Ωc=1,所以代入 C 1 = Ω c ∗ t a n ω 2 C_1=Ω_c*tan\frac{ω}{2} C1=Ωctan2ω可得:
C 1 = 1 ∗ t a n 2 ∗ π ∗ f c f s 2 = 1 ∗ t a n 2 ∗ π ∗ 1000 44100 2 = 0.071358 C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358 C1=1tan2fs2πfc=1tan2441002π1000=0.071358 G = 1 C 1 2 + 1.414 C 1 + 1 = 1 0.07135 8 2 + 1.414 ∗ 0.071358 + 1 = 0.904152203356 G=\frac{1}{C_1^2+1.414C_1+1}=\frac{1}{0.071358^2+1.414*0.071358+1}=0.904152203356 G=C12+1.414C1+11=0.0713582+1.4140.071358+11=0.904152203356代入 B 0 = G , B 1 = − 2 G , B 2 = G , A 0 = 1 , A 1 = G ( 2 C 1 2 − 2 ) , A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) B_0=G,B_1=-2G,B_2=G,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1) B0=GB1=2GB2=GA0=1A1=G(2C122)A2=GC121.414C1+1)可求出:
B 0 = G = 0.904152203356 B_0=G=0.904152203356 B0=G=0.904152203356 B 1 = − 2 G = − 1.808304406712 B_1=-2G=-1.808304406712 B1=2G=1.808304406712 B 2 = G = 0.904152203356 B_2=G=0.904152203356 B2=G=0.904152203356 A 0 = 1 A_0=1 A0=1 A 1 = G ( 2 C 1 2 − 2 ) = 0.904152203356 ∗ ( 2 ∗ 0.07135 8 2 − 2 ) = − 1.799096409760 A_1=G(2C_1^2-2)=0.904152203356*(2*0.071358^2-2)=-1.799096409760 A1=G(2C122)=0.904152203356(20.07135822)=1.799096409760 A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) = 0.904152203356 ∗ ( 0.07135 8 2 − 1.414 ∗ 0.071358 + 1 ) = 0.817510981662 A_2=G(C_1^2-1.414C_1+1)=0.904152203356*(0.071358^2-1.414*0.071358+1)=0.817510981662 A2=GC121.414C1+1)=0.9041522033560.07135821.4140.071358+1)=0.817510981662

2.2.2.2 2阶Butterworth HPF设计Matlab验证

在这里插入图片描述

2.3、带通滤波器

s = D ∗ 1 − E z − 1 + z − 2 1 + z − 2 s=D*\frac{1-Ez^{-1}+z^{-2}}{1+z^{-2}} s=D1+z21Ez1+z2 Ω c = D ∗ c o s ω 0 − c o s ω s i n ω Ω_c=D*\frac{cosω_0-cosω}{sinω} Ωc=Dsinωcosω0cosω其中 D = Ω ∗ c o t ( ω 2 − ω 1 2 ) D=Ω*cot(\frac{ω_2-ω_1}{2}) D=Ωcot(2ω2ω1) E = 2 c o s ( ω 2 + ω 1 2 ) c o s ( ω 2 − ω 1 2 ) = 2 c o s ω 0 E=\frac{2cos(\frac{ω_2+ω_1}{2})}{cos(\frac{ω_2-ω_1}{2})}=2cosω_0 E=cos(2ω2ω1)2cos(2ω2+ω1)=2cosω0

2.3.1 2阶Butterworth 带通滤波器设计

H ( s ) = 1 s + 1 (这里没搞懂为啥用 1 阶的表达式计算,但是能跟 m a t l a b 结果对得上,存疑!) H(s)=\frac{1}{s+1}(这里没搞懂为啥用1阶的表达式计算,但是能跟matlab结果对得上,存疑!) H(s)=s+11(这里没搞懂为啥用1阶的表达式计算,但是能跟matlab结果对得上,存疑!) s = D ∗ 1 − E z − 1 + z − 2 1 + z − 2 s=D*\frac{1-Ez^{-1}+z^{-2}}{1+z^{-2}} s=D1+z21Ez1+z2代入上式可得:
H ( z ) = 1 − z − 2 ( 1 + D ) − D E z − 1 + ( D − 1 ) z − 2 \begin{aligned} H(z)=\frac{1-z^{-2}}{(1+D)-DEz^{-1}+(D-1)z^{-2}} \end{aligned} H(z)=(1+D)DEz1+(D1)z21z2
G = 1 1 + D ,其中 D = Ω ∗ c o t ( ω 2 − ω 1 2 ) , E = 2 c o s ( ω 2 + ω 1 2 ) c o s ( ω 2 − ω 1 2 ) = 2 c o s ω 0 G=\frac{1}{1+D},其中D=Ω*cot(\frac{ω_2-ω_1}{2}),E=\frac{2cos(\frac{ω_2+ω_1}{2})}{cos(\frac{ω_2-ω_1}{2})}=2cosω_0 G=1+D1,其中D=Ωcot(2ω2ω1)E=cos(2ω2ω1)2cos(2ω2+ω1)=2cosω0
可得: B 0 = G , B 1 = 0 , B 2 = − G , A 0 = 1 , A 1 = − G D E , A 2 = G ( D − 1 ) B_0=G,B_1=0,B_2=-G,A_0=1,A_1=-GDE,A_2=G(D-1) B0=GB1=0B2=GA0=1A1=GDEA2=G(D1)

2.3.1.1 2阶Butterworth 带通滤波器设计举例

  设定fs=44100Hz, f1=300Hz, f2=350Hz 计算2阶Butterworth 带通滤波器
因为归一化所以 Ω c = 1 Ω_c=1 Ωc=1,所以代入 D = Ω ∗ c o t ( ω 2 − ω 1 2 ) D=Ω*cot(\frac{ω_2-ω_1}{2}) D=Ωcot(2ω2ω1),其中 w 1 = 2 π f 1 f s w_1=\frac{2πf_1}{fs} w1=fs2πf1 w 2 = 2 π f 2 f s w_2=\frac{2πf_2}{fs} w2=fs2πf2可得:
w 1 = 2 π f 1 f s = 2 π ∗ 300 44100 = 0.042742757 w_1=\frac{2πf_1}{fs}=\frac{2π*300}{44100}=0.042742757 w1=fs2πf1=441002π300=0.042742757 w 2 = 2 π f 2 f s = 2 π ∗ 350 44100 = 0.04986655 w_2=\frac{2πf_2}{fs}=\frac{2π*350}{44100}=0.04986655 w2=fs2πf2=441002π350=0.04986655 D = Ω ∗ c o t ( ω 2 − ω 1 2 ) = 1 ∗ c o t ( 0.04986655 − 0.042742757 2 ) = 280.7481323 D=Ω*cot(\frac{ω_2-ω_1}{2})=1*cot(\frac{0.04986655-0.042742757}{2})=280.7481323 D=Ωcot(2ω2ω1)=1cot(20.049866550.042742757)=280.7481323 G = 1 D + 1 = 1 280.7481323 + 1 = 0.003549269 G=\frac{1}{D+1}=\frac{1}{280.7481323+1}=0.003549269 G=D+11=280.7481323+11=0.003549269 E = 2 c o s ( ω 2 + ω 1 2 ) c o s ( ω 2 − ω 1 2 ) = 2 c o s ( 0.04986655 + 0.042742757 2 ) c o s ( 0.04986655 − 0.042742757 2 ) = 1.997868936 = 2 c o s ω 0 E=\frac{2cos(\frac{ω_2+ω_1}{2})}{cos(\frac{ω_2-ω_1}{2})}=\frac{2cos(\frac{0.04986655+0.042742757}{2})}{cos(\frac{0.04986655-0.042742757}{2})}=1.997868936=2cosω_0 E=cos(2ω2ω1)2cos(2ω2+ω1)=cos(20.049866550.042742757)2cos(20.04986655+0.042742757)=1.997868936=2cosω0代入 B 0 = G , B 1 = 0 , B 2 = − G , A 0 = 1 , A 1 = − G D E , A 2 = G ( D − 1 ) B_0=G,B_1=0,B_2=-G,A_0=1,A_1=-GDE,A_2=G(D-1) B0=GB1=0B2=GA0=1A1=GDEA2=G(D1)可求出:
B 0 = G = 0.003549269 B_0=G=0.003549269 B0=G=0.003549269 B 1 = 0 B_1=0 B1=0 B 2 = − G = − 0.003549269 B_2=-G=-0.003549269 B2=G=0.003549269 A 0 = 1 A_0=1 A0=1 A 1 = − G D E = − 0.003549269 ∗ 280.7481323 ∗ 1.997868936 = − 1.990777961 A_1=-GDE=-0.003549269*280.7481323*1.997868936=-1.990777961 A1=GDE=0.003549269280.74813231.997868936=1.990777961 A 2 = G ( D − 1 ) = 0.003549269 ∗ ( 280.7481323 − 1 ) = 0.992901461 A_2=G(D-1)=0.003549269*(280.7481323-1)=0.992901461 A2=G(D1)=0.003549269(280.74813231)=0.992901461

2.3.1.2 2阶Butterworth 带通滤波器设计Matlab验证

在这里插入图片描述

2.3.2 2阶Butterworth 带通滤波器设计(仅个人推测,应该是错的)

H ( s ) = 1 1 + 1.414 s + s 2 H(s)=\frac{1}{1+1.414s+s^2} H(s)=1+1.414s+s21 s = D ∗ 1 − E z − 1 + z − 2 1 + z − 2 s=D*\frac{1-Ez^{-1}+z^{-2}}{1+z^{-2}} s=D1+z21Ez1+z2代入上式可得:
H ( z ) = 1 − 2 z − 1 + z − 2 ( C 1 2 + 1.414 C 1 + 1 ) + ( 2 C 1 2 − 2 ) z − 1 + ( C 1 2 − 1.414 C 1 + 1 ) z − 1 \begin{aligned} H(z)=\frac{1-2z^{-1}+z^{-2}}{(C_1^2+1.414C_1+1)+(2C_1^2-2)z^{-1}+(C_1^2-1.414C_1+1)z^{-1}} \end{aligned} H(z)=(C12+1.414C1+1)+(2C122)z1+(C121.414C1+1)z112z1+z2
G = 1 C 1 2 + 1.414 C 1 + 1 ,其中 C 1 = t a n ω c 2 , ω c = 2 π f c f s G=\frac{1}{C_1^2+1.414C_1+1},其中C_1=tan\frac{ω_c}{2},ω_c=\frac{2πf_c}{f_s} G=C12+1.414C1+11,其中C1=tan2ωcωc=fs2πfc
可得: B 0 = G , B 1 = − 2 G , B 2 = G , A 0 = 1 , A 1 = G ( 2 C 1 2 − 2 ) , A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) B_0=G,B_1=-2G,B_2=G,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1) B0=GB1=2GB2=GA0=1A1=G(2C122)A2=GC121.414C1+1)

2.3.2.1 2阶Butterworth 带通滤波器设计举例(仅个人推测,应该是错的)

  设定fs=44100Hz, fc=1000Hz 计算2阶Butterworth HPF filter coefficients
因为归一化所以 Ω c = 1 Ω_c=1 Ωc=1,所以代入 C 1 = Ω c ∗ t a n ω 2 C_1=Ω_c*tan\frac{ω}{2} C1=Ωctan2ω可得:
C 1 = 1 ∗ t a n 2 ∗ π ∗ f c f s 2 = 1 ∗ t a n 2 ∗ π ∗ 1000 44100 2 = 0.071358 C_1=1*tan\frac{\frac{2*π*f_c}{f_s}}{2}=1*tan\frac{\frac{2*π*1000}{44100}}{2}=0.071358 C1=1tan2fs2πfc=1tan2441002π1000=0.071358 G = 1 C 1 2 + 1.414 C 1 + 1 = 1 0.07135 8 2 + 1.414 ∗ 0.071358 + 1 = 0.904152203356 G=\frac{1}{C_1^2+1.414C_1+1}=\frac{1}{0.071358^2+1.414*0.071358+1}=0.904152203356 G=C12+1.414C1+11=0.0713582+1.4140.071358+11=0.904152203356代入 B 0 = G , B 1 = − 2 G , B 2 = G , A 0 = 1 , A 1 = G ( 2 C 1 2 − 2 ) , A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) B_0=G,B_1=-2G,B_2=G,A_0=1,A_1=G(2C_1^2-2),A_2=G(C_1^2-1.414C_1+1) B0=GB1=2GB2=GA0=1A1=G(2C122)A2=GC121.414C1+1)可求出:
B 0 = G = 0.904152203356 B_0=G=0.904152203356 B0=G=0.904152203356 B 1 = − 2 G = − 1.808304406712 B_1=-2G=-1.808304406712 B1=2G=1.808304406712 B 2 = G = 0.904152203356 B_2=G=0.904152203356 B2=G=0.904152203356 A 0 = 1 A_0=1 A0=1 A 1 = G ( 2 C 1 2 − 2 ) = 0.904152203356 ∗ ( 2 ∗ 0.07135 8 2 − 2 ) = − 1.799096409760 A_1=G(2C_1^2-2)=0.904152203356*(2*0.071358^2-2)=-1.799096409760 A1=G(2C122)=0.904152203356(20.07135822)=1.799096409760 A 2 = G ( C 1 2 − 1.414 C 1 + 1 ) = 0.904152203356 ∗ ( 0.07135 8 2 − 1.414 ∗ 0.071358 + 1 ) = 0.817510981662 A_2=G(C_1^2-1.414C_1+1)=0.904152203356*(0.071358^2-1.414*0.071358+1)=0.817510981662 A2=GC121.414C1+1)=0.9041522033560.07135821.4140.071358+1)=0.817510981662

2.3.2.2 2阶Butterworth 带通滤波器设计Matlab验证

在这里插入图片描述

2.4、带阻滤波器(待推算完善)

s = D 1 ∗ 1 − z − 2 1 − E 1 z − 1 + z − 2 s=D_1*\frac{1-z^{-2}}{1-E_1z^{-1}+z^{-2}} s=D11E1z1+z21z2 Ω c = D 1 ∗ s i n ω c o s ω − c o s ω 0 Ω_c=D_1*\frac{sinω}{cosω-cosω_0} Ωc=D1cosωcosω0sinω其中 D 1 = Ω c ∗ t a n ( ω 2 − ω 1 2 ) D_1=Ω_c*tan(\frac{ω_2-ω_1}{2}) D1=Ωctan(2ω2ω1) E 1 = 2 c o s ( ω 2 + ω 1 2 ) c o s ( ω 2 − ω 1 2 ) = 2 c o s ω 0 E_1=\frac{2cos(\frac{ω_2+ω_1}{2})}{cos(\frac{ω_2-ω_1}{2})}=2cosω_0 E1=cos(2ω2ω1)2cos(2ω2+ω1)=2cosω0

2.4.1 2阶Butterworth 带阻滤波器设计(待推算完善)

2.4.1.1 2阶Butterworth 带阻滤波器设计举例(待推算完善)
2.4.2.2 2阶Butterworth 带阻滤波器设计Matlab验证

在这里插入图片描述


http://www.kler.cn/a/592777.html

相关文章:

  • 【sklearn 04】DNN、CNN、RNN
  • 【工具类】Java的 LocalDate 获取本月第一天和最后一天
  • 鸿蒙NEXT项目实战-百得知识库04
  • 网络爬虫【爬虫库request】
  • Rust学习之实现命令行小工具minigrep(一)
  • 关于HAL库的知识1----MSP函数
  • [解决] PDF转图片,中文乱码或显示方框的解决方案
  • 华为ipd流程华为流程体系管理华为数字化转型流程数字化管理解决方案介绍81页精品PPT
  • gralloc usage flags
  • dns实现主服务器
  • 如何解析返回的商品信息?
  • 深度解析扣减系统设计:从架构到实践
  • HAL库编程知识点---Can.c和Driver_can.c分层开发
  • 【论文阅读】Availability Attacks Create Shortcuts
  • Noe.js 原生 http 模块 vs Express 框架对比
  • c语言基础编程入门练习题
  • 蓝桥杯2023年第十四届省赛真题-子矩阵
  • 基于springboot医疗平台系统(源码+lw+部署文档+讲解),源码可白嫖!
  • 麒麟V10 arm cpu aarch64 下编译 RocketMQ-Client-CPP 2.2.0
  • Oracle 19c更换undo表空间操作步骤