深度学习项目--基于ResNet和DenseNet混合架构网络论文的复现(pytorch实现)
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
前言
- 如果说最经典的神经网络,
ResNet
当之无愧,后面基于ResNet网络提出DenseNet
网络,也获得了best paper
,本文是对这两个网络进行结合的一次论文复现,并用其进行了实验; - ResNet讲解: https://blog.csdn.net/weixin_74085818/article/details/145786990?spm=1001.2014.3001.5501
- DenseNet讲解:https://blog.csdn.net/weixin_74085818/article/details/146102290?spm=1001.2014.3001.5501
- 欢迎收藏 + 关注,本人将会持续更新
文章目录
- 1、ResNet网络与DenseNet网络模型探索
- 2、神经网络搭建与训练
- 1、导入数据
- 1、导入库
- 2、查看数据信息和导入数据
- 3、展示数据
- 4、数据导入
- 5、数据划分
- 6、动态加载数据
- 2、构建融合网络
- 3、模型训练
- 1、构建训练集
- 2、构建测试集
- 3、设置超参数
- 4、模型训练
- 5、结果可视化
- 6、模型评估
1、ResNet网络与DenseNet网络模型探索
常见的一些模型融合方法有:
- 特征级融合:可以在两个网络的某个中间层进行特征图的直接拼接(concatenation)或元素级相加(addition)。
- 决策级融合:另一种方法是在网络的输出端进行融合,即先分别使用ResNet和DenseNet对输入数据进行处理
- 混合架构设计:还可以设计一种新的网络架构,将ResNet和DenseNet的特点结合起来。例如,在一个网络中
- 基于注意力机制的融合:可以采用注意力机制动态地融合来自ResNet和DenseNet的信息。
本文采用的是第三种,参考论文:论文
Resnet模型和DenseNet模型特点:
- ResNet:通过建立前面层与后面层之间的“短路连接”(shortcu),其特征则直接进行sum操作,因此channel数不变;
- DenseNet:通过建立的是前面所有层与后面层的紧密连接(dense connection),其特征在channel维度上的直接concat来实现特征重用(feature reuse),因此channel数增加;
在《论文》中,作者发现:ResNet更侧重于特征的复用,而DenseNet则更侧重于特征的生成。
故作者提出了DPN网络,如图所示:
这个图比较难看懂,换个更清晰的图看:
这个图就容易看懂多了,DPN网络核心的就是上图中,蓝框和红框的东西,在DPN中,训练模块Block中,将输出的信息进行分拆,然后又进行融合,分拆和融合的思想是,ResNet的特征复用,与DenseNet的创建新特征:
- 混合模型融合分为两步: 思想是resnet模型的特征复用,densenet模型的创建新特征(dense_channel)
- ResNet思想,特征复用,这里同时结合densenet思路,在通道进行融合;
- 创建新特征:分别结合残差连接的resnet网络模块,与没有使用残差连接的网络模块数据,进行通道融合;
- 新特征通道数量 = out_channel + 2 * dense_channel。
- 具体实现,看代码即可:
参考ResNet网络,可以发现,这个基本模块是基于ResNet模型进行改进的。
在ResNet网络中,采用1*1,3*3,1*1的三层网络进行特征提取,该论文中也是采用这个结构,但是不同的是第二层3 * 3还加入了分组卷积的方式,以便更好的提取特征,具体看代码即可,代码注释详细。
2、神经网络搭建与训练
1、导入数据
1、导入库
import torch
import torch.nn as nn
import torchvision
import numpy as np
import os, PIL, pathlib
from collections import OrderedDict
import re
from torch.hub import load_state_dict_from_url
# 设置设备
device = "cuda" if torch.cuda.is_available() else "cpu"
device
'cuda'
2、查看数据信息和导入数据
data_dir = "./data/"
data_dir = pathlib.Path(data_dir)
# 类别数量
classnames = [str(path).split("\\")[0] for path in os.listdir(data_dir)]
classnames
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
3、展示数据
import matplotlib.pylab as plt
from PIL import Image
# 获取文件名称
data_path_name = "./data/Cockatoo/" # 不患病的
data_path_list = [f for f in os.listdir(data_path_name) if f.endswith(('jpg', 'png'))]
# 创建画板
fig, axes = plt.subplots(2, 8, figsize=(16, 6))
for ax, img_file in zip(axes.flat, data_path_list):
path_name = os.path.join(data_path_name, img_file)
img = Image.open(path_name) # 打开
# 显示
ax.imshow(img)
ax.axis('off')
plt.show()
4、数据导入
from torchvision import transforms, datasets
# 数据统一格式
img_height = 224
img_width = 224
data_tranforms = transforms.Compose([
transforms.Resize([img_height, img_width]),
transforms.ToTensor(),
transforms.Normalize( # 归一化
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# 加载所有数据
total_data = datasets.ImageFolder(root="./data/", transform=data_tranforms)
5、数据划分
# 大小 8 : 2
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size
train_data, test_data = torch.utils.data.random_split(total_data, [train_size, test_size])
6、动态加载数据
batch_size = 32
train_dl = torch.utils.data.DataLoader(
train_data,
batch_size=batch_size,
shuffle=True
)
test_dl = torch.utils.data.DataLoader(
test_data,
batch_size=batch_size,
shuffle=False
)
# 查看数据维度
for data, labels in train_dl:
print("data shape[N, C, H, W]: ", data.shape)
print("labels: ", labels)
break
data shape[N, C, H, W]: torch.Size([32, 3, 224, 224])
labels: tensor([2, 2, 3, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 3, 0, 1, 0, 1, 3, 3, 2, 0, 0, 3,
3, 3, 3, 1, 3, 3, 1, 2])
2、构建融合网络
ResNet和DenseNet 神经网络是以,ResNet为基础,故在特征提取中,采用和ResNet网络一样的1 * 1、3 * 3、1 * 1卷积核.
ResNet和DenseNet结合网络图为:
import torch.nn.functional as F
# DPN模块:Block,结合网络图即可
class Block(nn.Module):
'''
in_channel: 输入通道数
mid_channel: 中间通道数
out_channel: ResNet输出的通道数
dense_channel: DenseNet网络产生新的特征通道
groups: 分组卷积参数
is_shortcut: ResNet是否进行残差操作
'''
def __init__(self, in_channel, mid_channel, out_channel, dense_channel, stride, groups, is_shortcut=False):
super().__init__()
# 参数存储
self.is_shortcut = is_shortcut
self.out_channel = out_channel
self.dense_channel = dense_channel
# 构建卷积模块,三层(Conv2d、BN、ReLU)
self.conv1 = nn.Sequential(
# 卷积核 1 * 1
nn.Conv2d(in_channel, mid_channel, kernel_size=1, bias=False), # 偏置设置为Fasle,因为下一层是BN层,BN本身启用了bias
nn.BatchNorm2d(mid_channel),
nn.ReLU()
)
self.conv2 = nn.Sequential(
# 分组卷积(为了提取更多特征),且卷积核为3 * 3
nn.Conv2d(mid_channel, mid_channel, kernel_size=3, stride=stride, groups=groups, padding=1, bias=False),
nn.BatchNorm2d(mid_channel),
nn.ReLU()
)
self.conv3 = nn.Sequential(
# 卷积核 1 * 1,维持维度
nn.Conv2d(mid_channel, out_channel + dense_channel, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channel + dense_channel)
)
# 是否启动ResNet的残差连接, 这个对应上面网络图中间那一模块
if self.is_shortcut:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channel, out_channel + dense_channel, kernel_size=3, stride=stride, padding=1,bias=False),
nn.BatchNorm2d(out_channel + dense_channel)
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
a = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.is_shortcut:
a = self.shortcut(a)
# 核心: 混合模型融合
'''
混合模型融合分为两步: 思想是resnet模型的特征复用,densenet模型的创建新特征(dense_channel)
1、ResNet思想,特征复用,这里同时结合densenet思路,在用到通道进行融合
2、创建新特征:分别结合残差连接的resnet网络模块,与没有使用残差连接的网络模块数据,进行通道融合
新特征通道数量 = out_channel + 2 * dense_channel
'''
x = torch.cat([a[:, :self.out_channel, :, :]+x[:, :self.out_channel, :, :], a[:, self.out_channel:, :, :], x[:, self.out_channel:, :, :]], dim=1)
return x
class DPN(nn.Module):
# cfg:参数字典
def __init__(self, cfg):
super().__init__()
# 储存参数
self.group = cfg['group'] # 有一层为分组卷积
self.in_channel = cfg['in_channels']
mid_channel = cfg['mid_channels']
out_channel = cfg['out_channels']
dense_channel = cfg['dense_channels']
num = cfg['num'] # Blcok数量,元组
# 数据处理模块,即网络头
self.conv1 = nn.Sequential(
nn.Conv2d(3, self.in_channel, kernel_size=7, padding=3, bias=False, padding_mode='zeros'), # 卷积核为7,和densenet一样
nn.BatchNorm2d(self.in_channel),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=0) # 降维
)
self.conv2 = self._make_layers(mid_channel[0], out_channel[0], dense_channel[0], num[0], stride=1)
self.conv3 = self._make_layers(mid_channel[1], out_channel[1], dense_channel[1], num[1], stride=2)
self.conv4 = self._make_layers(mid_channel[2], out_channel[2], dense_channel[2], num[2], stride=2)
self.conv5 = self._make_layers(mid_channel[3], out_channel[3], dense_channel[3], num[3], stride=2)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(cfg['out_channels'][3] + (num[3] + 1) * cfg['dense_channels'][3], cfg['classes']) # Linear层,展开
# 构建网络层,从 网络 图像上看,Block的叠加数量不同
def _make_layers(self, mid_channel, out_channel, dense_channel, num, stride):
layers = []
# 每一个部分,都先用shortcut的Block,可以满足浅层特征利用, 增强特征提取作用,提升性能
layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel,stride=stride, groups=self.group, is_shortcut=True))
# 新特征通道数量 = out_channel + 2 * dense_channel
self.in_channel = out_channel + 2 * dense_channel
for i in range(1, num):
layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=1, groups=self.group))
# 每次叠加,通道数量多一倍 dense_channel
self.in_channel += dense_channel
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.pool(x)
x = torch.flatten(x, start_dim=1)
x = self.fc(x)
return x
设置参数与模型构建,在DPN论文中,提供了两种网络结果,DPN92,DPN98
def DPN92(n_class=4):
cfg = {
"group" : 32,
"in_channels" : 64,
"mid_channels" : (96, 192, 384, 768),
"out_channels" : (256, 512, 1024, 2048),
"dense_channels" : (16, 32, 24, 128),
"num" : (3, 4, 20, 3),
"classes" : (len(classnames))
}
return DPN(cfg)
def DPN98(n_class=4):
cfg = {
"group" : 40,
"in_channels" : 96,
"mid_channels" : (160, 320, 640, 1280),
"out_channels" : (256, 512, 1024, 2048),
"dense_channels" : (16, 32, 32, 128),
"num" : (3, 6, 20, 3),
"classes" : (len(classnames))
}
return DPN(cfg)
model = DPN92().to(device)
model
DPN(
(conv1): Sequential(
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(conv2): Sequential(
(0): Block(
(conv1): Sequential(
(0): Conv2d(64, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(96, 272, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(272, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(shortcut): Sequential(
(0): Conv2d(64, 272, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(272, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(1): Block(
(conv1): Sequential(
(0): Conv2d(288, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(96, 272, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(272, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(2): Block(
(conv1): Sequential(
(0): Conv2d(304, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(96, 272, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(272, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
)
(conv3): Sequential(
(0): Block(
(conv1): Sequential(
(0): Conv2d(320, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(192, 544, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(shortcut): Sequential(
(0): Conv2d(320, 544, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(1): Block(
(conv1): Sequential(
(0): Conv2d(576, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(192, 544, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(2): Block(
(conv1): Sequential(
(0): Conv2d(608, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(192, 544, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(3): Block(
(conv1): Sequential(
(0): Conv2d(640, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(192, 544, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
)
(conv4): Sequential(
(0): Block(
(conv1): Sequential(
(0): Conv2d(672, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(shortcut): Sequential(
(0): Conv2d(672, 1048, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(1): Block(
(conv1): Sequential(
(0): Conv2d(1072, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(2): Block(
(conv1): Sequential(
(0): Conv2d(1096, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(3): Block(
(conv1): Sequential(
(0): Conv2d(1120, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(4): Block(
(conv1): Sequential(
(0): Conv2d(1144, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(5): Block(
(conv1): Sequential(
(0): Conv2d(1168, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(6): Block(
(conv1): Sequential(
(0): Conv2d(1192, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(7): Block(
(conv1): Sequential(
(0): Conv2d(1216, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(8): Block(
(conv1): Sequential(
(0): Conv2d(1240, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(9): Block(
(conv1): Sequential(
(0): Conv2d(1264, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(10): Block(
(conv1): Sequential(
(0): Conv2d(1288, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(11): Block(
(conv1): Sequential(
(0): Conv2d(1312, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(12): Block(
(conv1): Sequential(
(0): Conv2d(1336, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(13): Block(
(conv1): Sequential(
(0): Conv2d(1360, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(14): Block(
(conv1): Sequential(
(0): Conv2d(1384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(15): Block(
(conv1): Sequential(
(0): Conv2d(1408, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(16): Block(
(conv1): Sequential(
(0): Conv2d(1432, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(17): Block(
(conv1): Sequential(
(0): Conv2d(1456, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(18): Block(
(conv1): Sequential(
(0): Conv2d(1480, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(19): Block(
(conv1): Sequential(
(0): Conv2d(1504, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(384, 1048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(1048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
)
(conv5): Sequential(
(0): Block(
(conv1): Sequential(
(0): Conv2d(1528, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(768, 2176, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(2176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(shortcut): Sequential(
(0): Conv2d(1528, 2176, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(2176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(1): Block(
(conv1): Sequential(
(0): Conv2d(2304, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(768, 2176, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(2176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
(2): Block(
(conv1): Sequential(
(0): Conv2d(2432, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
(1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv3): Sequential(
(0): Conv2d(768, 2176, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(2176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(relu): ReLU(inplace=True)
)
)
(pool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2560, out_features=4, bias=True)
)
model(torch.randn(32, 3, 224, 224).to(device)).shape
torch.Size([32, 4])
3、模型训练
1、构建训练集
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
batch_size = len(dataloader)
train_acc, train_loss = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
# 训练
pred = model(X)
loss = loss_fn(pred, y)
# 梯度下降法
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 记录
train_loss += loss.item()
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_acc /= size
train_loss /= batch_size
return train_acc, train_loss
2、构建测试集
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
batch_size = len(dataloader)
test_acc, test_loss = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
test_loss += loss.item()
test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
test_acc /= size
test_loss /= batch_size
return test_acc, test_loss
3、设置超参数
loss_fn = nn.CrossEntropyLoss() # 损失函数
learn_lr = 1e-4 # 超参数
optimizer = torch.optim.Adam(model.parameters(), lr=learn_lr) # 优化器
4、模型训练
import copy
train_acc = []
train_loss = []
test_acc = []
test_loss = []
epoches = 40
best_acc = 0 # 设置一个最佳准确率,作为最佳模型的判别指标
for i in range(epoches):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
# 保存最佳模型到 best_model
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
# 输出
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
print(template.format(i + 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
PATH = './best_model.pth' # 保存的参数文件名
torch.save(best_model.state_dict(), PATH)
print("Done")
Epoch: 1, Train_acc:56.4%, Train_loss:1.281, Test_acc:27.4%, Test_loss:2.379
Epoch: 2, Train_acc:70.6%, Train_loss:0.863, Test_acc:37.2%, Test_loss:2.512
Epoch: 3, Train_acc:79.4%, Train_loss:0.633, Test_acc:59.3%, Test_loss:1.114
Epoch: 4, Train_acc:85.6%, Train_loss:0.446, Test_acc:77.9%, Test_loss:0.714
Epoch: 5, Train_acc:91.4%, Train_loss:0.320, Test_acc:85.8%, Test_loss:0.411
Epoch: 6, Train_acc:90.3%, Train_loss:0.232, Test_acc:92.0%, Test_loss:0.234
Epoch: 7, Train_acc:96.9%, Train_loss:0.111, Test_acc:91.2%, Test_loss:0.196
Epoch: 8, Train_acc:96.7%, Train_loss:0.102, Test_acc:91.2%, Test_loss:0.263
Epoch: 9, Train_acc:96.7%, Train_loss:0.120, Test_acc:88.5%, Test_loss:0.282
Epoch:10, Train_acc:96.0%, Train_loss:0.131, Test_acc:77.9%, Test_loss:1.098
Epoch:11, Train_acc:96.2%, Train_loss:0.198, Test_acc:92.0%, Test_loss:0.319
Epoch:12, Train_acc:94.0%, Train_loss:0.164, Test_acc:90.3%, Test_loss:0.449
Epoch:13, Train_acc:96.2%, Train_loss:0.175, Test_acc:86.7%, Test_loss:0.330
Epoch:14, Train_acc:96.7%, Train_loss:0.085, Test_acc:86.7%, Test_loss:0.495
Epoch:15, Train_acc:98.0%, Train_loss:0.052, Test_acc:84.1%, Test_loss:0.561
Epoch:16, Train_acc:99.1%, Train_loss:0.022, Test_acc:88.5%, Test_loss:0.335
Epoch:17, Train_acc:99.6%, Train_loss:0.021, Test_acc:89.4%, Test_loss:0.272
Epoch:18, Train_acc:99.8%, Train_loss:0.027, Test_acc:88.5%, Test_loss:0.299
Epoch:19, Train_acc:97.1%, Train_loss:0.176, Test_acc:83.2%, Test_loss:0.796
Epoch:20, Train_acc:88.1%, Train_loss:0.588, Test_acc:81.4%, Test_loss:0.775
Epoch:21, Train_acc:87.8%, Train_loss:0.322, Test_acc:54.0%, Test_loss:4.497
Epoch:22, Train_acc:92.9%, Train_loss:0.187, Test_acc:75.2%, Test_loss:1.528
Epoch:23, Train_acc:97.6%, Train_loss:0.081, Test_acc:85.0%, Test_loss:0.750
Epoch:24, Train_acc:97.6%, Train_loss:0.055, Test_acc:91.2%, Test_loss:0.283
Epoch:25, Train_acc:99.6%, Train_loss:0.020, Test_acc:94.7%, Test_loss:0.225
Epoch:26, Train_acc:100.0%, Train_loss:0.007, Test_acc:93.8%, Test_loss:0.267
Epoch:27, Train_acc:99.8%, Train_loss:0.012, Test_acc:90.3%, Test_loss:0.266
Epoch:28, Train_acc:100.0%, Train_loss:0.004, Test_acc:89.4%, Test_loss:0.385
Epoch:29, Train_acc:99.8%, Train_loss:0.047, Test_acc:92.0%, Test_loss:0.224
Epoch:30, Train_acc:98.5%, Train_loss:0.055, Test_acc:82.3%, Test_loss:1.111
Epoch:31, Train_acc:98.7%, Train_loss:0.073, Test_acc:84.1%, Test_loss:0.642
Epoch:32, Train_acc:94.2%, Train_loss:0.159, Test_acc:78.8%, Test_loss:0.788
Epoch:33, Train_acc:96.0%, Train_loss:0.097, Test_acc:89.4%, Test_loss:0.411
Epoch:34, Train_acc:97.8%, Train_loss:0.085, Test_acc:90.3%, Test_loss:0.345
Epoch:35, Train_acc:98.9%, Train_loss:0.039, Test_acc:90.3%, Test_loss:0.633
Epoch:36, Train_acc:99.3%, Train_loss:0.042, Test_acc:85.0%, Test_loss:0.472
Epoch:37, Train_acc:99.3%, Train_loss:0.041, Test_acc:84.1%, Test_loss:0.580
Epoch:38, Train_acc:97.8%, Train_loss:0.161, Test_acc:87.6%, Test_loss:0.526
Epoch:39, Train_acc:97.1%, Train_loss:0.092, Test_acc:88.5%, Test_loss:0.616
Epoch:40, Train_acc:97.3%, Train_loss:0.073, Test_acc:88.5%, Test_loss:0.484
Done
5、结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
epochs_range = range(epoches)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training= Loss')
plt.show()
探索:
- 在Resnet模型跑的时候,是跑了80次,但是这个模型并不适合跑30次,在经过20、30、40、80次等实验,与批次大小为16、32、48、64后,发现40次左右是比较较好一点结果;
- 从测试集来说,这个模型效果高于RenNet模型,从验证集来说,准确率也高于,但是在20轮有一次误差比较大,但是只有一次,属于随机误差。
- ResNet实验
6、模型评估
# 将参数加载到model当中
best_model.load_state_dict(torch.load(PATH, map_location=device))
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
print(epoch_test_acc, epoch_test_loss)
0.9469026548672567 0.22493984922766685