字节跳动实习生主导开发强化学习算法,助力大语言模型性能突破
目录
禹棋赢的背景与成就
主要成就
DAPO算法的技术细节
算法优势
禹棋赢的研究历程
关键时间节点
字节跳动的“Top Seed人才计划”
计划特点
小编总结
在大模型时代,经验不再是唯一的衡量标准,好奇心、执行力和对新技术的敏锐洞察力成为推动技术进步的关键因素。字节跳动通过“Top Seed人才计划”为年轻研究者提供资源和平台,让他们能够在前沿技术领域发挥重要作用。本文将详细介绍字节跳动实习生禹棋赢在强化学习(RL)算法领域的突破性贡献,以及他如何通过创新思维推动大语言模型(LLM)的性能提升。
禹棋赢的背景与成就
禹棋赢,2001年出生,本科毕业于哈尔滨工业大学,后直博进入清华大学AIR实验室,目前博士三年级在读。2024年,他作为研究实习生加入字节跳动的“Top Seed人才计划”,并迅速展现出卓越的研究能力。在字节跳动大模型团队内部负责攻坚下一代语言模型的小组中,禹棋赢是唯一一位实习生,且被委以重任,直接负责强化学习方向的研究工作。
主要成就
- DAPO算法的开发:禹棋赢与清华大学AIR联合实验室SIA Lab共同开发的强化学习算法DAPO取得显著成果,助力Qwen2.5-32B模型在AIME 2024基准测试中超越使用DeepSeek GRPO算法的模型,且训练效率大幅提升。
- aha moment的实现:去年10月,禹棋赢在字节跳动内部首次实现了类似DeepSeek-R1的“aha moment”,通过强化学习显著提升了模型的推理能力和泛化能力。
- 开源项目:禹棋赢已经将DAPO算法开源,为全球研究者提供了新的思路和工具。
DAPO算法的技术细节
DAPO算法是一种基于结果(outcome-based)的奖励机制进行强化学习,这一创新思路与当时主流方法不同,却最终被证明是有效的。在字节跳动内部小模型和开源数据集的支持下,禹棋赢通过少量GPU资源不断迭代优化,成功让模型自主涌现出复杂的推理能力,甚至超越了当时团队内部最大的模型。
算法优势
特性 | DAPO算法 | DeepSeek GRPO算法 |
---|---|---|
训练步数 | 减少50% | 标准步数 |
基准测试得分 | 50分 | 45分 |
推理能力 | 显著提升 | 一般提升 |
禹棋赢的研究历程
禹棋赢的研究历程充满了创新与突破。他提出使用基于结果(outcome-based)的奖励机制进行强化学习,这一创新思路与当时主流方法不同,却最终被证明是有效的。在字节跳动内部小模型和开源数据集的支持下,禹棋赢通过少量GPU资源不断迭代优化,成功让模型自主涌现出复杂的推理能力,甚至超越了当时团队内部最大的模型。
关键时间节点
时间 | 事件 |
---|---|
2023年5月 | 加入字节跳动“Top Seed人才计划” |
2023年10月 | 实现“aha moment” |
2024年1月 | DAPO算法开源 |
字节跳动的“Top Seed人才计划”
字节跳动通过“Top Seed人才计划”为年轻研究者提供资源和平台,让他们能够在前沿技术领域发挥重要作用。该计划不仅提供顶级待遇和算力资源,还鼓励年轻研究者进行自由探索和创新。
计划特点
特点 | 描述 |
---|---|
资源支持 | 提供顶级算力资源 |
待遇 | 业界顶级待遇 |
探索空间 | 鼓励自由探索和创新 |
小编总结
禹棋赢的故事反映了当下AI行业对年轻人才的重视。在大模型时代,经验不再是唯一的衡量标准,好奇心、执行力和对新技术的敏锐洞察力成为推动技术进步的关键因素。字节跳动通过“Top Seed人才计划”为年轻研究者提供资源和平台,让他们能够在前沿技术领域发挥重要作用。禹棋赢的突破性贡献不仅为字节跳动在大语言模型领域的技术突破奠定了基础,也为全球研究者提供了新的思路和工具。