当前位置: 首页 > article >正文

论文阅读笔记:Denoising Diffusion Probabilistic Models (2)

接论文阅读笔记:Denoising Diffusion Probabilistic Models (1)

3、论文推理过程

扩散模型的流程如下图所示,可以看出 q ( x 0 : T ) q(x_{0:T}) q(x0:T)为正向加噪音过程, p θ ( x 0 : T ) p_{\theta}(x_{0:T}) pθ(x0:T)为逆向去噪过程。可以看出,逆向去噪的末端得到的图上还散布一些噪点。
请添加图片描述

3.1、一些词的理解

q ( x 0 ) q(x_0) q(x0):以MNIST数据集为例, x 0 x_0 x0表示MNIST数据集中的图像,而 q ( x 0 ) q(x_0) q(x0)就表示数据集MNIST中数据集的分布情况。
q ( x T ) q(x_T) q(xT) x T x^T xT为正向加噪过程的终点图像,其分布满足 q ( x T ) ∼ N ( α t ˉ ⋅ x 0 , 1 − α t ˉ ) q(x_T)\sim N(\sqrt{\bar{\alpha_t}} \cdot x_{0}, 1-\bar{\alpha_t}) q(xT)N(αtˉ x0,1αtˉ)
p ( x T ) p(x^T) p(xT) x T x^T xT是逆向去噪过程的起点,其对应的分布 p ( x T ) p(x^T) p(xT)为一个正态分布, p ( x T ) ∼ N ( 0 , 1 ) p(x_T)\sim N(0,1) p(xT)N(01)

3.2、推理过程

正向加噪过程满足马尔可夫性质,因此有公式(1)。

q ( x 0 : T ) = q ( x 0 ) ⋅ ∏ t = 1 T q ( x t ∣ x t − 1 ) = q ( x 0 ) ⋅ q ( x 1 ∣ x 0 ) ⋅ q ( x 2 ∣ x 1 ) … q ( x T ∣ x T − 1 ) q ( x 1 : T ∣ x 0 ) = q ( x 1 ∣ x 0 ) ⋅ q ( x 2 ∣ x 1 ) … q ( x T ∣ x T − 1 ) ) \begin{equation} \begin{split} q(x_{0:T})&=q(x_0)\cdot \prod_{t=1}^{T}{q(x_t|x_{t-1})} \\ &=q(x_0)\cdot q(x_1|x_0)\cdot q(x_2|x_1)\dots q(x_T|x_{T-1}) \\ q(x_{1:T}|x_0)&=q(x_1|x_0)\cdot q(x_2|x_1)\dots q(x_T|x_{T-1})) \end{split} \end{equation} q(x0:T)q(x1:Tx0)=q(x0)t=1Tq(xtxt1)=q(x0)q(x1x0)q(x2x1)q(xTxT1)=q(x1x0)q(x2x1)q(xTxT1))

逆向去噪过程如公式(2)。

p θ ( x 0 : T ) = p ( x T ) ⋅ ∏ t = 1 T p θ ( x t − 1 ∣ x t ) = p ( x T ) ⋅ p θ ( x T − 1 ∣ x T ) ⋅ p θ ( x T − 2 ∣ x T − 1 ) … p θ ( x 0 ∣ x 1 ) . \begin{equation} \begin{split} p_{\theta}(x_{0:T})&=p(x_T)\cdot \prod_{t=1}^{T}{p_{\theta}(x_{t-1}|x_{t})} \\ &=p(x_T)\cdot p_{\theta}(x_{T-1}|x_T)\cdot p_{\theta}(x_{T-2}|x_{T-1})\dots p_{\theta}(x_{0}|x_{1}). \end{split} \end{equation} pθ(x0:T)=p(xT)t=1Tpθ(xt1xt)=p(xT)pθ(xT1xT)pθ(xT2xT1)pθ(x0x1).

逆向去噪的目标是使得其终点与正向加噪的起点相同,也就是使得 p θ ( x 0 ) p_\theta(x_0) pθ(x0)最大,逆向去噪过程的终点为 x 0 x_0 x0的概率最大。
p θ ( x 0 ) = ∫ p θ ( x 0 , x 1 ) d x 1 ( 联合分布概率公式 ) = ∫ p θ ( x 1 ) ⋅ p θ ( x 0 ∣ x 1 ) d x 1 ( 贝叶斯概率公式 ) = ∫ ( ∫ p θ ( x 1 , x 2 ) d x 2 ) ⋅ p θ ( x 0 ∣ x 1 ) d x 1 ( 积分套积分 ) = ∬ p θ ( x 2 ) ⋅ p θ ( x 1 ∣ x 2 ) ⋅ p θ ( x 0 ∣ x 1 ) d x 1 d x 2 ( 改写为二重积分 ) = ⋮ = ∫ ∫ ⋯ ∫ p θ ( x T ) ⋅ p θ ( x T − 1 ∣ x T ) ⋅ p θ ( x T − 2 ∣ x − 1 ) ⋯ p θ ( x 0 ∣ x 1 ) ⋅ d x 1 d x 2 ⋯ d x T = ∫ p θ ( x 0 : T ) d x 1 : T ( T − 1 重积分,其实可以直接一步写到这里 ) = ∫ d 1 : T ⋅ p θ ( x 0 : T ) ⋅ q ( x 1 : T ∣ x 0 ) q ( x 1 : T ∣ x 0 ) = ∫ d x 1 : T ⋅ q ( x 1 : T ∣ x 0 ) ⋅ p θ ( x 0 : T ) q ( x 1 : T ∣ x 0 ) = ∫ d x 1 : T ⋅ q ( x 1 : T ∣ x 0 ) ⋅ p ( x T ) ⋅ p θ ( x T − 1 ∣ x T ) ⋅ p θ ( x T − 2 ∣ x T − 1 ) ⋯ p θ ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ⋅ q ( x 2 ∣ x 1 ) … q ( x T ∣ x T − 1 ) = ∫ d x 1 : T ⋅ q ( x 1 : T ∣ x 0 ) ⋅ p θ ( x T ) ⋅ p θ ( x T − 1 ∣ x T ) ⋅ p ( x T − 2 ∣ x T − 1 ) … p ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ⋅ q ( x 2 ∣ x 1 ) … q ( x T ∣ x T − 1 ) = ∫ d x 1 : T ⋅ q ( x 1 , : T ∣ x 0 ) ⋅ p θ ( x T ) ⋅ ∏ t = 1 T p θ ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 ) = E x 1 : T ∼ q ( x 1 : T ∣ x 0 ) p θ ( x T ) ⋅ ∏ t = 1 T p θ ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 ) ( 改写为期望的形式 ) \begin{equation} \begin{split} p_{\theta}(x_0)&=\int p_{\theta}(x_0,x_1)dx_{1} (联合分布概率公式)\\ &=\int p_{\theta}(x_1)\cdot p_{\theta}(x_0|x_1)dx_1 (贝叶斯概率公式) \\ &=\int \Big(\int p_{\theta}(x_1,x_2)dx_2 \Big) \cdot p_{\theta}(x_0|x_1)dx_1 (积分套积分)\\ &=\iint p_{\theta}(x_2)\cdot p_{\theta}(x_1|x_2) \cdot p_{\theta}(x_0|x_1)dx_1 dx_2(改写为二重积分)\\ &= \vdots \\ &= \int \int \cdots \int p_{\theta}(x_T)\cdot p_{\theta}(x_{T-1}|x_{T})\cdot p_{\theta}(x_{T-2}|x_{-1})\cdots p_{\theta}(x_0|x_1) \cdot dx_1 dx_2 \cdots dx_T \\ &= \int p_{\theta}(x_{0:T})dx_{1:T} (T-1重积分,其实可以直接一步写到这里) \\ &= \int d_{1:T} \cdot p_{\theta}(x_{0:T}) \cdot \frac{q(x_{1:T} | x_0)}{q(x_{1:T}|x_0)} \\ &= \int dx_{1:T} \cdot q(x_{1:T} | x_0) \cdot \frac{ p_{\theta}(x_{0:T}) }{q(x_{1:T}|x_0)} \\ &= \int dx_{1:T} \cdot q(x_{1:T} | x_0) \cdot \frac{p(x_T)\cdot p_{\theta}(x_{T-1}|x_T)\cdot p_{\theta}(x_{T-2}|x_{T-1})\cdots p_{\theta}(x_{0}|x_{1})}{q(x^1|x^0)\cdot q(x_2|x_1)\dots q(x_T|x_{T-1})} \\ &= \int dx_{1:T} \cdot q(x_{1:T}| x_0) \cdot p_{\theta}(x_T)\cdot \frac{ p_{\theta}(x_{T-1}|x_T)\cdot p(x_{T-2}|x_{T-1})\dots p(x_{0}|x_{1})}{q(x_1|x_0)\cdot q(x_2|x_1)\dots q(x_T|x_{T-1})} \\ &= \int dx_{1:T} \cdot q(x_{1,:T}| x_0) \cdot p_{\theta}(x_T)\cdot \prod_{t=1}^{T} \frac{ p_{\theta}(x_{t-1}|x_t)}{q(x_t|x_{t-1})} \\ &= E_{x_{1:T} \sim q(x_{1:T} | x_0)} p_{\theta}(x_T)\cdot \prod_{t=1}^{T} \frac{ p_{\theta}(x_{t-1}|x_t)}{q(x_t|x_{t-1})} (改写为期望的形式)\\ \end{split} \end{equation} pθ(x0)=pθ(x0,x1)dx1(联合分布概率公式)=pθ(x1)pθ(x0x1)dx1(贝叶斯概率公式)=(pθ(x1,x2)dx2)pθ(x0x1)dx1(积分套积分)=pθ(x2)pθ(x1x2)pθ(x0x1)dx1dx2(改写为二重积分)==∫∫pθ(xT)pθ(xT1xT)pθ(xT2x1)pθ(x0x1)dx1dx2dxT=pθ(x0:T)dx1:T(T1重积分,其实可以直接一步写到这里)=d1:Tpθ(x0:T)q(x1:Tx0)q(x1:Tx0)=dx1:Tq(x1:Tx0)q(x1:Tx0)pθ(x0:T)=dx1:Tq(x1:Tx0)q(x1x0)q(x2x1)q(xTxT1)p(xT)pθ(xT1xT)pθ(xT2xT1)pθ(x0x1)=dx1:Tq(x1:Tx0)pθ(xT)q(x1x0)q(x2x1)q(xTxT1)pθ(xT1xT)p(xT2xT1)p(x0x1)=dx1:Tq(x1,:Tx0)pθ(xT)t=1Tq(xtxt1)pθ(xt1xt)=Ex1:Tq(x1:Tx0)pθ(xT)t=1Tq(xtxt1)pθ(xt1xt)(改写为期望的形式)
因此公式3中的参数 θ \theta θ应满足
θ = a r g max θ p θ ( x 0 ) . \begin{equation} \theta= arg \underset {\theta}{\text{max}} p_{\theta}(x^0). \end{equation} θ=argθmaxpθ(x0).
公式4是对数据集中的一张图片进行求解,然而数据集中通常是有成千上万张图像的。假设数据集中有 N N N张图像,因此有公式6,其目的是求得一组参数 θ \theta θ,使得 L L L取得最大值。值得注意的是 q ( x 0 ) q(x^0) q(x0)表示数据集中每张图片被采样出来的概率。
为了防止边缘效应,在本文中令 p ( x 1 ∣ x 0 ) = q ( x 1 ∣ x 0 ) p(x^1|x^{0})=q(x^1|x^{0}) p(x1x0)=q(x1x0).
L : = − l o g [ p ( x 0 ) ] = − l o g [ E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) p ( x T ) ⋅ ∏ t = 1 T p ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 ) ] ≤ − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ⋅ ∏ t = 1 T p ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + ∑ t = 1 T l o g [ p ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + l o g [ p ( x 0 ∣ x 1 ) q ( x 1 ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + l o g [ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ⏟ p ( x 1 ∣ x 0 ) = q ( x 1 ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t ∣ x t − 1 , x 0 ) ⏟ q ( x t ∣ x t − 1 ) = q ( x t ∣ x t − 1 , x 0 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + l o g [ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t , x t − 1 , x 0 ) ⋅ q ( x t − 1 , x 0 ) ⋅ q ( x 0 ) q ( x 0 ) ⋅ q ( x t , x 0 ) q ( x t , x 0 ) ⏟ q ( x t ∣ x t − 1 , x 0 ) = q ( x t , x t − 1 , x 0 ) q ( x t − 1 , x 0 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + l o g [ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ⋅ q ( x t − 1 , x 0 ) q ( x 0 ) ⋅ q ( x 0 ) q ( x t , x 0 ) ⏟ q ( x t , x t − 1 , x 0 ) = q ( x t , x 0 ) ⋅ q ( x t − 1 ∣ x t , x 0 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + l o g [ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ⋅ q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) ⏟ q ( x t − 1 , x 0 ) = q ( x 0 ) ⋅ q ( x t − 1 ∣ x 0 ) ; q ( x t , x 0 ) = q ( x 0 ) ⋅ q ( x t ∣ x 0 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + l o g [ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ] + ∑ t = 2 T l o g [ q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + l o g [ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ] + l o g [ q ( x 1 ∣ x 0 ) q ( x 2 ∣ x 0 ) ⋅ q ( x 2 ∣ x 0 ) q ( x 3 ∣ x 0 ) ⋯ q ( x T − 1 ∣ x 0 ) q ( x T ∣ x 0 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) ] + l o g [ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ] + l o g [ q ( x 1 ∣ x 0 ) q ( x T ∣ x 0 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) q ( x T ∣ x 0 ) ] + ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ] + l o g [ p ( x 1 ∣ x 0 ) ] ⏟ l o g [ p ( x T ) + l o g [ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ] ] + l o g [ q ( x 1 ∣ x 0 ) q ( x T ∣ x 0 ) ] = l o g [ p ( x T ) ⋅ p ( x 0 ∣ x 1 ) p ( x 1 ∣ x 0 ) ⋅ q ( x 1 ∣ x 0 ) q ( x T ∣ x 0 ) ] ) = − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x T ) q ( x T ∣ x 0 ) ] ) − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( ∑ t = 2 T l o g [ p ( x t − 1 ∣ x t ) q ( x t − 1 ∣ x t , x 0 ) ] ) − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x 0 ∣ x 1 ) ] ) = E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ q ( x T ∣ x 0 ) p ( x T ) ] ) + E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( ∑ t = 2 T l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) − E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ p ( x 0 ∣ x 1 ) ] ) = E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ q ( x T ∣ x 0 ) p ( x T ) ] ) ⏟ L 1 + E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( ∑ t = 2 T l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) ⏟ L 2 − l o g [ p ( x 0 ∣ x 1 ) ] ⏟ L 3 : 常数么 ? \begin{equation} \begin{split} L&:=- log\Big[p(x^0)\Big] \\ &= -log \Big[ E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} p(x^T)\cdot \prod_{t=1}^{T} \frac{ p(x^{t-1}|x^t)}{q(x^t|x^{t-1})}\Big] \\ & \leq -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \bigg( log [p(x^T)\cdot \prod_{t=1}^{T} \frac{ p(x^{t-1}|x^t)}{q(x^t|x^{t-1})}]\bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \bigg( log [p(x^T)]+\sum_{t=1}^{T} log \Big[ \frac{ p(x^{t-1}|x^t)}{q(x^t|x^{t-1})}\Big]\bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \bigg( log [p(x^T)]+ log\Big[\frac{ p(x^{0}|x^1)}{q(x^1|x^{0})} \Big]+\sum_{t=2}^{T} log \Big[ \frac{ p(x^{t-1}|x^t)}{q(x^t|x^{t-1})}\Big] \bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \bigg( log [p(x^T)]+ log\Big[\frac{ p(x^{0}|x^1)}{\underbrace{ p(x^1|x^{0})}_{p(x^1|x^{0})=q(x^1|x^{0})}} \Big]+\sum_{t=2}^{T} log \Big[\underbrace{ \frac{ p(x^{t-1}|x^t)}{q(x^t|x^{t-1},x^0)}}_{q(x^t|x^{t-1})=q(x^t|x^{t-1},x^0)}\Big] \bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg( log [p(x^T)]+ log\Big[\frac{ p(x^{0}|x^1)}{p(x^1|x^{0})} \Big]+\sum_{t=2}^{T} log \Big[\underbrace{ \frac{ p(x^{t-1}|x^t)}{q(x^t,x^{t-1},x^0)} \cdot q(x^{t-1}, x^0) \cdot \frac{q(x^0)}{q(x^0)}\cdot \frac{q(x^t,x^0)}{q(x^t,x^0)}}_{ q(x^t|x^{t-1},x^0)=\frac{q(x^t,x^{t-1},x^0)}{q(x^{t-1},x^0)}}\Big] \Bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg( log [p(x^T)]+ log\Big[\frac{ p(x^{0}|x^1)}{p(x^1|x^{0})} \Big]+\sum_{t=2}^{T} log \Big[\underbrace{ \frac{ p(x^{t-1}|x^t)}{q(x^{t-1}|x^t,x^0)} \cdot \frac{q(x^{t-1}, x^0) }{q(x^0)}\cdot \frac{ q(x^0)}{q(x^t,x^0)}}_{q(x^t,x^{t-1},x^0)= q(x^t,x^0) \cdot q(x^{t-1}|x^t,x^0)}\Big] \Bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg( log [p(x^T)]+ log\Big[\frac{ p(x^{0}|x^1)}{p(x^1|x^{0})} \Big]+\sum_{t=2}^{T} log \Big[\underbrace{ \frac{ p(x^{t-1}|x^t)}{q(x^{t-1}|x^t,x^0)} \cdot \frac{q(x^{t-1}| x^0) }{q(x^{t}|x^0)}}_{q(x^{t-1},x^0)=q(x^0) \cdot q(x^{t-1}|x^0) ; q(x^{t},x^0)=q(x^0) \cdot q(x^{t}|x^0)}\Big] \Bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg( log [p(x^T)]+ log\Big[\frac{ p(x^{0}|x^1)}{p(x^1|x^{0})} \Big]+\sum_{t=2}^{T} log \Big[\frac{ p(x^{t-1}|x^t)}{q(x^{t-1}|x^t,x^0)} \Big] + \sum_{t=2}^{T} log \Big[\frac{q(x^{t-1}| x^0) }{q(x^{t}|x^0)}\Big] \Bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg( log [p(x^T)]+ log\Big[\frac{ p(x^{0}|x^1)}{p(x^1|x^{0})} \Big]+\sum_{t=2}^{T} log \Big[\frac{ p(x^{t-1}|x^t)}{q(x^{t-1}|x^t,x^0)} \Big] + log \Big[\frac{q(x^{1}| x^0) }{q(x^{2}|x^0)} \cdot \frac{q(x^{2}| x^0) }{q(x^{3}|x^0)}\cdots \frac{q(x^{T-1}| x^0) }{q(x^{T}|x^0)}\Big] \Bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg( log [p(x^T)]+ log\Big[\frac{ p(x^{0}|x^1)}{p(x^1|x^{0})} \Big]+\sum_{t=2}^{T} log \Big[\frac{ p(x^{t-1}|x^t)}{q(x^{t-1}|x^t,x^0)} \Big] + log \Big[\frac{q(x^{1}| x^0) }{q(x^{T}|x^0)}\Big] \Bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(\underbrace{log \Big[\frac{p(x^T)}{q(x^{T}|x^0)}\Big]+\sum_{t=2}^{T} log \Big[\frac{ p(x^{t-1}|x^t)}{q(x^{t-1}|x^t,x^0)} \Big] + log \Big[p(x^{1}|x^0)\Big] }_{log [p(x^T)+log\Big[\frac{ p(x^{0}|x^1)}{p(x^1|x^{0})} \Big]]+ log \Big[\frac{q(x^{1}| x^0) }{q(x^{T}|x^0)}\Big]=log\bigg[p(x^T) \cdot \frac{ p(x^{0}|x^1)}{\bcancel{p(x^1|x^{0})}} \cdot \frac{\bcancel{q(x^{1}| x^0) }}{q(x^{T}|x^0)} \bigg]}\Bigg)\\ &= -E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(log \Big[ \frac{ p(x^T)}{q(x^{T}|x^0)}\Big]\Bigg)-E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(\sum_{t=2}^{T} log \Big[\frac{ p(x^{t-1}|x^t)}{q(x^{t-1}|x^t,x^0)} \Big]\Bigg) - E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg( log \Big[p(x^{0}|x^1)\Big] \Bigg)\\ &= E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)}\Big]\Bigg)+E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(\sum_{t=2}^{T} log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big]\Bigg) - E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg( log \Big[p(x^{0}|x^1)\Big] \Bigg)\\ &= \underbrace{E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)}\Big]\Bigg)}_{L_1}+\underbrace{E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(\sum_{t=2}^{T} log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big]\Bigg)}_{L_2} - \underbrace{log \Big[p(x^{0}|x^1)\Big]}_{L_3:常数么?} \\ \end{split} \end{equation} L:=log[p(x0)]=log[Ex1,2,Tq(x1,2Tx0)p(xT)t=1Tq(xtxt1)p(xt1xt)]Ex1,2,Tq(x1,2Tx0)(log[p(xT)t=1Tq(xtxt1)p(xt1xt)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+t=1Tlog[q(xtxt1)p(xt1xt)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+log[q(x1x0)p(x0x1)]+t=2Tlog[q(xtxt1)p(xt1xt)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+log[p(x1x0)=q(x1x0) p(x1x0)p(x0x1)]+t=2Tlog[q(xtxt1)=q(xtxt1,x0) q(xtxt1,x0)p(xt1xt)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+log[p(x1x0)p(x0x1)]+t=2Tlog[q(xtxt1,x0)=q(xt1,x0)q(xt,xt1,x0) q(xt,xt1,x0)p(xt1xt)q(xt1,x0)q(x0)q(x0)q(xt,x0)q(xt,x0)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+log[p(x1x0)p(x0x1)]+t=2Tlog[q(xt,xt1,x0)=q(xt,x0)q(xt1xt,x0) q(xt1xt,x0)p(xt1xt)q(x0)q(xt1,x0)q(xt,x0)q(x0)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+log[p(x1x0)p(x0x1)]+t=2Tlog[q(xt1,x0)=q(x0)q(xt1x0);q(xt,x0)=q(x0)q(xtx0) q(xt1xt,x0)p(xt1xt)q(xtx0)q(xt1x0)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+log[p(x1x0)p(x0x1)]+t=2Tlog[q(xt1xt,x0)p(xt1xt)]+t=2Tlog[q(xtx0)q(xt1x0)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+log[p(x1x0)p(x0x1)]+t=2Tlog[q(xt1xt,x0)p(xt1xt)]+log[q(x2x0)q(x1x0)q(x3x0)q(x2x0)q(xTx0)q(xT1x0)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)]+log[p(x1x0)p(x0x1)]+t=2Tlog[q(xt1xt,x0)p(xt1xt)]+log[q(xTx0)q(x1x0)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)+log[p(x1x0)p(x0x1)]]+log[q(xTx0)q(x1x0)]=log[p(xT)p(x1x0) p(x0x1)q(xTx0)q(x1x0) ] log[q(xTx0)p(xT)]+t=2Tlog[q(xt1xt,x0)p(xt1xt)]+log[p(x1x0)])=Ex1,2,Tq(x1,2Tx0)(log[q(xTx0)p(xT)])Ex1,2,Tq(x1,2Tx0)(t=2Tlog[q(xt1xt,x0)p(xt1xt)])Ex1,2,Tq(x1,2Tx0)(log[p(x0x1)])=Ex1,2,Tq(x1,2Tx0)(log[p(xT)q(xTx0)])+Ex1,2,Tq(x1,2Tx0)(t=2Tlog[p(xt1xt)q(xt1xt,x0)])Ex1,2,Tq(x1,2Tx0)(log[p(x0x1)])=L1 Ex1,2,Tq(x1,2Tx0)(log[p(xT)q(xTx0)])+L2 Ex1,2,Tq(x1,2Tx0)(t=2Tlog[p(xt1xt)q(xt1xt,x0)])L3:常数么? log[p(x0x1)]
可以看出 L L L总共氛围了3项,首先考虑第一项 L 1 L_1 L1
L 1 = E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ q ( x T ∣ x 0 ) p ( x T ) ] ) = ∫ d x 1 , 2 ⋯ T ⋅ q ( x 1 , 2 ⋯ T ∣ x 0 ) ⋅ l o g [ q ( x T ∣ x 0 ) p ( x T ) ] = ∫ d x 1 , 2 ⋯ T ⋅ q ( x 1 , 2 ⋯ T ∣ x 0 ) q ( x T ∣ x 0 ) ⋅ q ( x T ∣ x 0 ) ⋅ l o g [ q ( x T ∣ x 0 ) p ( x T ) ] = ∫ d x 1 , 2 ⋯ T ⋅ q ( x 1 , 2 ⋯ T − 1 ∣ x 0 , x T ) ⏟ q ( x 1 , 2 ⋯ T ∣ x 0 ) = q ( x T ∣ x 0 ) ⋅ q ( x 1 , 2 ⋯ T − 1 ∣ x 0 , x T ) ⋅ q ( x T ∣ x 0 ) ⋅ l o g [ q ( x T ∣ x 0 ) p ( x T ) ] = ∫ ( ∫ q ( x 1 , 2 ⋯ T − 1 ∣ x 0 , x T ) ⋅ ∏ k = 1 T − 1 d x k ⏟ 二重积分化为两个定积分相乘,并且 = 1 ) ⋅ q ( x T ∣ x 0 ) ⋅ l o g [ q ( x T ∣ x 0 ) p ( x T ) ] ⋅ d x T = ∫ q ( x T ∣ x 0 ) ⋅ l o g [ q ( x T ∣ x 0 ) p ( x T ) ] ⋅ d x T = E x T ∼ q ( x T ∣ x 0 ) l o g [ q ( x T ∣ x 0 ) p ( x T ) ] = K L ( q ( x T ∣ x 0 ) ∣ ∣ p ( x T ) ) \begin{equation} \begin{split} L_1&=E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)}\Big]\Bigg) \\ &=\int dx^{1,2\cdots T} \cdot q(x^{1,2 \cdots T}| x^0) \cdot log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)}\Big] \\ &=\int dx^{1,2\cdots T} \cdot \frac{q(x^{1,2 \cdots T}| x^0)}{q(x^T|x^0)} \cdot q(x^T|x^0) \cdot log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)}\Big] \\ &=\int dx^{1,2\cdots T} \cdot \underbrace{ q(x^{1,2 \cdots T-1}| x^0, x^T) }_{q(x^{1,2 \cdots T}| x^0)=q(x^{T}|x^0) \cdot q(x^{1,2 \cdots T-1}| x^0, x^T)} \cdot q(x^T|x^0) \cdot log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)}\Big] \\ &=\int \Bigg( \underbrace{ \int q(x^{1,2 \cdots T-1}| x^0, x^T) \cdot \prod_{k=1}^{T-1} dx^k }_{二重积分化为两个定积分相乘,并且=1} \Bigg) \cdot q(x^T|x^0) \cdot log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)} \Big] \cdot dx^{T} \\ &=\int q(x^T|x^0) \cdot log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)} \Big] \cdot dx^{T} \\ &=E_{x^T\sim q(x^T|x^0)} log \Big[ \frac{q(x^{T}|x^0)}{ p(x^T)} \Big]\\ &= KL\Big(q(x^T|x^0)||p(x^T)\Big) \end{split} \end{equation} L1=Ex1,2,Tq(x1,2Tx0)(log[p(xT)q(xTx0)])=dx1,2Tq(x1,2Tx0)log[p(xT)q(xTx0)]=dx1,2Tq(xTx0)q(x1,2Tx0)q(xTx0)log[p(xT)q(xTx0)]=dx1,2Tq(x1,2Tx0)=q(xTx0)q(x1,2T1x0,xT) q(x1,2T1x0,xT)q(xTx0)log[p(xT)q(xTx0)]=(二重积分化为两个定积分相乘,并且=1 q(x1,2T1x0,xT)k=1T1dxk)q(xTx0)log[p(xT)q(xTx0)]dxT=q(xTx0)log[p(xT)q(xTx0)]dxT=ExTq(xTx0)log[p(xT)q(xTx0)]=KL(q(xTx0)∣∣p(xT))

可以看出, L 1 L_1 L1 q ( x T ∣ x 0 ) q(x^T|x^0) q(xTx0) p ( x T ) p(x^T) p(xT) q ( x T ∣ x 0 ) q(x^T|x^0) q(xTx0)是前向加噪过程的终点,是一个固定的分布。而 p ( x T ) p(x^T) p(xT)是高斯分布,这在论文《Denoising Diffusion Probabilistic Models》中的2 Background的第四行中有说明。由 两个高斯分布KL散度推导可以计算出 L 1 L_1 L1,也就是说 L 1 L_1 L1是一个定值。因此,在损失函数中 L 1 L_1 L1可以被忽略掉。

接着考虑第二项 L 2 L_2 L2

L 2 = E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( ∑ t = 2 T l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) = ∑ t = 2 T E x 1 , 2 , ⋯ T ∼ q ( x 1 , 2 ⋯ T ∣ x 0 ) ( l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) = ∑ t = 2 T ( ∫ d x 1 , 2 ⋯ T ⋅ q ( x 1 , 2 ⋯ T ∣ x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) = ∑ t = 2 T ( ∫ d x 1 , 2 ⋯ T ⋅ q ( x 1 , 2 ⋯ T ∣ x 0 ) q ( x t − 1 ∣ x t , x 0 ) ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) = ∑ t = 2 T ( ∫ d x 1 , 2 ⋯ T ⋅ q ( x 0 , 1 , 2 ⋯ T ) q ( x 0 ) ⏟ q ( x 0 , 1 , 2 ⋯ T ) = q ( x 0 ) ⋅ q ( x 1 , 2 ⋯ T ∣ x 0 ) ⋅ q ( x t , x 0 ) q ( x t , x t − 1 , x 0 ) ⏟ q ( x t , x t − 1 , x 0 ) = q ( x t , x 0 ) ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) = ∑ t = 2 T ( ∫ d x 1 , 2 ⋯ T ⋅ q ( x 0 , 1 , 2 ⋯ T ) q ( x 0 ) ⋅ q ( x t , x 0 ) q ( x t − 1 , x 0 ) ⋅ q ( x t ∣ x t − 1 , x 0 ) ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) = ∑ t = 2 T ( ∫ [ ∫ q ( x 0 , 1 , 2 ⋯ T ) q ( x 0 ) ⋅ q ( x t , x 0 ) q ( x t − 1 , x 0 ) ⋅ q ( x t ∣ x t − 1 , x 0 ) ∏ k ≥ 1 , k ≠ t − 1 d x k ] ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) d x t − 1 ] ) = ∑ t = 2 T ( ∫ [ ∫ q ( x 0 , 1 , 2 ⋯ T ) q ( x t − 1 , x 0 ) ⋅ q ( x t , x 0 ) q ( x 0 ) ⋅ q ( x t ∣ x t − 1 , x 0 ) ∏ k ≥ 1 , k ≠ t − 1 d x k ] ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) d x t − 1 ] ) = ∑ t = 2 T ( ∫ [ ∫ q ( x k : k ≥ 1 , k ≠ t − 1 ∣ x t − 1 , x 0 ) ⏟ q ( x 0 ; T ) = q ( x t − 1 , x 0 ) ⋅ q ( x k : k ≥ 1 , k ≠ t − 1 ∣ x t − 1 , x 0 ) ⋅ q ( x t ∣ x 0 ) q ( x t ∣ x t − 1 , x 0 ) ⏟ q ( x t , x 0 ) = q ( x 0 ) ⋅ q ( x t ∣ x 0 ) ∏ k ≥ 1 , k ≠ t − 1 d x k ] ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) d x t − 1 ] ) = ∑ t = 2 T ( ∫ [ ∫ q ( x k : k ≥ 1 , k ≠ t − 1 ∣ x t − 1 , x 0 ) ⋅ q ( x t ∣ x 0 ) q ( x t ∣ x t − 1 , x 0 ) ⏟ = 1 ∏ k ≥ 1 , k ≠ t − 1 d x k ] ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) d x t − 1 ] ) = ∑ t = 2 T ( ∫ [ ∫ q ( x k : k ≥ 1 , k ≠ t − 1 ∣ x t − 1 , x 0 ) ⋅ ∏ k ≥ 1 , k ≠ t − 1 d x k ] ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) d x t − 1 ] ) = ∑ t = 2 T ( ∫ [ ∫ q ( x k : k ≥ 1 , k ≠ t − 1 ∣ x t − 1 , x 0 ) ⋅ ∏ k ≥ 1 , k ≠ t − 1 d x k ⏟ = 1 ] ⋅ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) d x t − 1 ] ) = ∑ t = 2 T ( ∫ q ( x t − 1 ∣ x t , x 0 ) ⋅ l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) d x t − 1 ] ) = ∑ t = 2 T ( E x t − 1 ∼ q ( x t − 1 ∣ x t , x 0 ) l o g [ q ( x t − 1 ∣ x t , x 0 ) p ( x t − 1 ∣ x t ) ] ) = ∑ t = 2 T K L ( q ( x t − 1 ∣ x t , x 0 ) ∣ ∣ p ( x t − 1 ∣ x t ) ) \begin{equation} \begin{split} L_2&=E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(\sum_{t=2}^{T} log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big]\Bigg)\\ &=\sum_{t=2}^{T} E_{x^{1,2, \cdots T} \sim q(x^{1,2 \cdots T} | x^0)} \Bigg(log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big]\Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int dx^{1,2\cdots T} \cdot q(x^{1,2 \cdots T}| x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int dx^{1,2\cdots T} \cdot \frac{ q(x^{1,2 \cdots T}| x^0)}{q(x^{t-1}|x^t,x^0)} \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int dx^{1,2\cdots T} \cdot \underbrace{ \frac{q(x^{0,1,2\cdots T})}{q(x^0)}}_{q(x^{0,1,2\cdots T})=q(x^0)\cdot q(x^{1,2 \cdots T}| x^0)} \cdot \underbrace{ \frac{q(x^t,x^0)}{q(x^t,x^{t-1},x^0)}}_{q(x^t,x^{t-1},x^0)=q(x^t,x^0)\cdot q(x^{t-1}|x^t,x^0)} \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int dx^{1,2\cdots T} \cdot \frac{q(x^{0,1,2\cdots T})}{q(x^0)}\cdot \frac{q(x^t,x^0)}{q(x^{t-1},x^0)\cdot q(x^t|x^{t-1},x^0)} \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int \bigg[ \int \frac{q(x^{0,1,2\cdots T})}{q(x^0)}\cdot \frac{q(x^t,x^0)}{q(x^{t-1},x^0)\cdot q(x^t|x^{t-1},x^0)} \prod_{k\geq1 ,k\neq t-1} dx^k \bigg] \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} dx^{t-1} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int \bigg[ \int \frac{q(x^{0,1,2\cdots T})}{q(x^{t-1},x^0)}\cdot \frac{q(x^t,x^0)}{q(x^0)\cdot q(x^t|x^{t-1},x^0)} \prod_{k\geq1 ,k\neq t-1} dx^k \bigg] \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} dx^{t-1} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int \bigg[ \underbrace{ \int q(x^{k:k\geq1,k\neq t-1}|x^{t-1},x^0)}_{q(x^{0;T})=q(x^{t-1},x^0)\cdot q(x^{k:k\geq1,k\neq t-1}|x^{t-1},x^0)} \cdot \underbrace {\frac{q(x^t|x^0)}{ q(x^t|x^{t-1},x^0)}}_{q(x^t,x^0)=q(x^0)\cdot q(x^t|x^0)} \prod_{k\geq1 ,k\neq t-1} dx^k \bigg] \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} dx^{t-1} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int \bigg[\int q(x^{k:k\geq1,k\neq t-1}|x^{t-1},x^0)\cdot \underbrace {\frac{q(x^t|x^0)}{ q(x^t|x^{t-1},x^0)}}_{=1} \prod_{k\geq1 ,k\neq t-1} dx^k \bigg] \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} dx^{t-1} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int \bigg[\int q(x^{k:k\geq1,k\neq t-1}|x^{t-1},x^0)\cdot \prod_{k\geq1 ,k\neq t-1} dx^k \bigg] \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} dx^{t-1} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int \bigg[\underbrace{ \int q(x^{k:k\geq1,k\neq t-1}|x^{t-1},x^0)\cdot \prod_{k\geq1 ,k\neq t-1} dx^k }_{=1}\bigg] \cdot q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} dx^{t-1} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( \int q(x^{t-1}|x^t,x^0) \cdot log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} dx^{t-1} \Big] \Bigg)\\ &=\sum_{t=2}^{T} \Bigg( E_{x^{t-1}\sim q(x^{t-1}|x^t,x^0)} log \Big[\frac{q(x^{t-1}|x^t,x^0)}{ p(x^{t-1}|x^t)} \Big] \Bigg)\\ &=\sum_{t=2}^{T}KL\bigg(q(x^{t-1}|x^t,x^0)||p(x^{t-1}|x^t) \bigg) \end{split} \end{equation} L2=Ex1,2,Tq(x1,2Tx0)(t=2Tlog[p(xt1xt)q(xt1xt,x0)])=t=2TEx1,2,Tq(x1,2Tx0)(log[p(xt1xt)q(xt1xt,x0)])=t=2T(dx1,2Tq(x1,2Tx0)log[p(xt1xt)q(xt1xt,x0)])=t=2T(dx1,2Tq(xt1xt,x0)q(x1,2Tx0)q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)])=t=2T(dx1,2Tq(x0,1,2T)=q(x0)q(x1,2Tx0) q(x0)q(x0,1,2T)q(xt,xt1,x0)=q(xt,x0)q(xt1xt,x0) q(xt,xt1,x0)q(xt,x0)q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)])=t=2T(dx1,2Tq(x0)q(x0,1,2T)q(xt1,x0)q(xtxt1,x0)q(xt,x0)q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)])=t=2T([q(x0)q(x0,1,2T)q(xt1,x0)q(xtxt1,x0)q(xt,x0)k1,k=t1dxk]q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)dxt1])=t=2T([q(xt1,x0)q(x0,1,2T)q(x0)q(xtxt1,x0)q(xt,x0)k1,k=t1dxk]q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)dxt1])=t=2T([q(x0;T)=q(xt1,x0)q(xk:k1,k=t1xt1,x0) q(xk:k1,k=t1xt1,x0)q(xt,x0)=q(x0)q(xtx0) q(xtxt1,x0)q(xtx0)k1,k=t1dxk]q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)dxt1])=t=2T([q(xk:k1,k=t1xt1,x0)=1 q(xtxt1,x0)q(xtx0)k1,k=t1dxk]q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)dxt1])=t=2T([q(xk:k1,k=t1xt1,x0)k1,k=t1dxk]q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)dxt1])=t=2T([=1 q(xk:k1,k=t1xt1,x0)k1,k=t1dxk]q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)dxt1])=t=2T(q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)dxt1])=t=2T(Ext1q(xt1xt,x0)log[p(xt1xt)q(xt1xt,x0)])=t=2TKL(q(xt1xt,x0)∣∣p(xt1xt))
最后考虑 L 3 L_3 L3,事实上,在论文《Deep Unsupervised Learning using Nonequilibrium Thermodynamics》中提到为了防止边界效应,强制另 p ( x 0 ∣ x 1 ) = q ( x 1 ∣ x 0 ) p(x^0|x^1)=q(x^1|x^0) p(x0x1)=q(x1x0),因此这一项也是个常数。

由以上分析可知道,损失函数可以写为公式(9)。
L : = L 1 + L 2 + L 3 = K L ( q ( x T ∣ x 0 ) ∣ ∣ p ( x T ) ) + ∑ t = 2 T K L ( q ( x t − 1 ∣ x t , x 0 ) ∣ ∣ p ( x t − 1 ∣ x t ) ) − l o g [ p ( x 0 ∣ x 1 ) ] \begin{equation} \begin{split} L&:=L_1+L_2+L_3 \\ &=KL\Big(q(x^T|x^0)||p(x^T)\Big) + \sum_{t=2}^{T}KL\bigg(q(x^{t-1}|x^t,x^0)||p(x^{t-1}|x^t) \bigg)-log \Big[p(x^{0}|x^1)\Big] \end{split} \end{equation} L:=L1+L2+L3=KL(q(xTx0)∣∣p(xT))+t=2TKL(q(xt1xt,x0)∣∣p(xt1xt))log[p(x0x1)]

忽略掉 L 1 L_1 L1 L 2 L_2 L2,损失函数可以写为公式10。
L : = ∑ t = 2 T K L ( q ( x t − 1 ∣ x t , x 0 ) ∣ ∣ p ( x t − 1 ∣ x t ) ) \begin{equation} \begin{split} L:=\sum_{t=2}^{T}KL\bigg(q(x^{t-1}|x^t,x^0)||p(x^{t-1}|x^t) \bigg) \end{split} \end{equation} L:=t=2TKL(q(xt1xt,x0)∣∣p(xt1xt))

可以看出 损失函数 L L L是两个高斯分布 q ( x t − 1 ∣ x t , x 0 ) q(x^{t-1}|x^t,x^0) q(xt1xt,x0) p ( x t − 1 ∣ x t ) p(x^{t-1}|x^t) p(xt1xt)的KL散度。 q ( x t − 1 ∣ x t , x 0 ) q(x^{t-1}|x^t,x^0) q(xt1xt,x0)的均值和方差由论文阅读笔记:Denoising Diffusion Probabilistic Models (1)可知,分别为

σ 1 = β t ⋅ ( 1 − α t − 1 ˉ ) ( 1 − α t ˉ ) μ 1 = 1 α t ⋅ ( x t − β t 1 − α t ˉ ⋅ z t ) 或者 μ 1 = α t ⋅ ( 1 − α t − 1 ˉ ) 1 − α t ˉ ⋅ x t + β t ⋅ α t − 1 ˉ 1 − α t ˉ ⋅ x 0 \begin{equation} \begin{split} \sigma_1&=\sqrt{\frac{\beta_t\cdot (1-\bar{\alpha_{t-1}})}{(1-\bar{\alpha_{t}})}}\\ \mu_1&=\frac{1}{\sqrt{\alpha_t}}\cdot (x_t-\frac{\beta_t}{\sqrt{1-\bar{\alpha_t}}}\cdot z_t) \\ 或者 \mu_1&=\frac{\sqrt{\alpha_t}\cdot(1-\bar{\alpha_{t-1}})}{1-\bar{\alpha_t}}\cdot x_t+\frac{\beta_t\cdot \sqrt{\bar{\alpha_{t-1}}}}{1-\bar{\alpha_t}} \cdot x_0 \end{split} \end{equation} σ1μ1或者μ1=(1αtˉ)βt(1αt1ˉ) =αt 1(xt1αtˉ βtzt)=1αtˉαt (1αt1ˉ)xt+1αtˉβtαt1ˉ x0

p ( x t − 1 ∣ x t ) p(x^{t-1}|x^t) p(xt1xt)则由模型(深度学习模型或者其他模型)估算出其均值和方差,分别记作 μ 2 , σ 2 \mu_2,\sigma_2 μ2,σ2
因此损失函数 L L L可以进一步写为公式12。
L : = l o g [ σ 2 σ 1 ] + σ 1 2 + ( μ 1 − μ 2 ) 2 2 σ 2 2 − 1 2 \begin{equation} \begin{split} L:=log \Big[\frac{\sigma_2}{\sigma_1}\Big]+\frac{\sigma_1^2 +(\mu_1-\mu_2)^2}{2\sigma_2^2}-\frac{1}{2} \end{split} \end{equation} L:=log[σ1σ2]+2σ22σ12+(μ1μ2)221

最后结合原文中的代码diffusion-https://github.com/hojonathanho/diffusion来理解一下训练过程和推理过程。
首先是训练过程


class GaussianDiffusion2:
	  """
	  Contains utilities for the diffusion model.
	  Arguments:
	  - what the network predicts (x_{t-1}, x_0, or epsilon)
	  - which loss function (kl or unweighted MSE)
	  - what is the variance of p(x_{t-1}|x_t) (learned, fixed to beta, or fixed to weighted beta)
	  - what type of decoder, and how to weight its loss? is its variance learned too?
	  """
	
	# 模型中的一些定义
	def __init__(self, *, betas, model_mean_type, model_var_type, loss_type):
	    self.model_mean_type = model_mean_type  # xprev, xstart, eps
	    self.model_var_type = model_var_type  # learned, fixedsmall, fixedlarge
	    self.loss_type = loss_type  # kl, mse
	
	    assert isinstance(betas, np.ndarray)
	    self.betas = betas = betas.astype(np.float64)  # computations here in float64 for accuracy
	    assert (betas > 0).all() and (betas <= 1).all()
	    timesteps, = betas.shape
	    self.num_timesteps = int(timesteps)
	
	    alphas = 1. - betas
	    self.alphas_cumprod = np.cumprod(alphas, axis=0)
	    self.alphas_cumprod_prev = np.append(1., self.alphas_cumprod[:-1])
	    assert self.alphas_cumprod_prev.shape == (timesteps,)
	
	    # calculations for diffusion q(x_t | x_{t-1}) and others
	    self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
	    self.sqrt_one_minus_alphas_cumprod = np.sqrt(1. - self.alphas_cumprod)
	    self.log_one_minus_alphas_cumprod = np.log(1. - self.alphas_cumprod)
	    self.sqrt_recip_alphas_cumprod = np.sqrt(1. / self.alphas_cumprod)
	    self.sqrt_recipm1_alphas_cumprod = np.sqrt(1. / self.alphas_cumprod - 1)
	
	    # calculations for posterior q(x_{t-1} | x_t, x_0)
	    self.posterior_variance = betas * (1. - self.alphas_cumprod_prev) / (1. - self.alphas_cumprod)
	    # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
	    self.posterior_log_variance_clipped = np.log(np.append(self.posterior_variance[1], self.posterior_variance[1:]))
	    self.posterior_mean_coef1 = betas * np.sqrt(self.alphas_cumprod_prev) / (1. - self.alphas_cumprod)
	    self.posterior_mean_coef2 = (1. - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1. - self.alphas_cumprod)
	
	# 在模型Model类当中的方法
	def train_fn(self, x, y):
	    B, H, W, C = x.shape
	    if self.randflip:
	      x = tf.image.random_flip_left_right(x)
	      assert x.shape == [B, H, W, C]
	    # 随机生成第t步
	    t = tf.random_uniform([B], 0, self.diffusion.num_timesteps, dtype=tf.int32)
	    # 计算第t步时对应的损失函数
	    losses = self.diffusion.training_losses(
	      denoise_fn=functools.partial(self._denoise, y=y, dropout=self.dropout), x_start=x, t=t)
	    assert losses.shape == t.shape == [B]
	    return {'loss': tf.reduce_mean(losses)}
	
	# 根据x_start采样到第t步的带噪图像
	def q_sample(self, x_start, t, noise=None):
	    """
	    Diffuse the data (t == 0 means diffused for 1 step)
	    """
	    if noise is None:
	      noise = tf.random_normal(shape=x_start.shape)
	    assert noise.shape == x_start.shape
	    return (
	        self._extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
	        self._extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
	    )
	
	# 计算q(x^{t-1}|x^t,x^0)分布的均值和方差
	def q_posterior_mean_variance(self, x_start, x_t, t):
	    """
	    Compute the mean and variance of the diffusion posterior q(x_{t-1} | x_t, x_0)
	    """
	    assert x_start.shape == x_t.shape
	    posterior_mean = (
	        self._extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
	        self._extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
	    )
	    posterior_variance = self._extract(self.posterior_variance, t, x_t.shape)
	    posterior_log_variance_clipped = self._extract(self.posterior_log_variance_clipped, t, x_t.shape)
	    assert (posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] ==
	            x_start.shape[0])
	    return posterior_mean, posterior_variance, posterior_log_variance_clipped
    
    # 由深度学习模型UNet估算出p(x^{t-1}|x^t)分布的方差和均值
	def p_mean_variance(self, denoise_fn, *, x, t, clip_denoised: bool, return_pred_xstart: bool):
	    B, H, W, C = x.shape
	    assert t.shape == [B]
	    model_output = denoise_fn(x, t)
	
	    # Learned or fixed variance?
	    if self.model_var_type == 'learned':
	      assert model_output.shape == [B, H, W, C * 2]
	      model_output, model_log_variance = tf.split(model_output, 2, axis=-1)
	      model_variance = tf.exp(model_log_variance)
	    elif self.model_var_type in ['fixedsmall', 'fixedlarge']:
	      # below: only log_variance is used in the KL computations
	      model_variance, model_log_variance = {
	        # for fixedlarge, we set the initial (log-)variance like so to get a better decoder log likelihood
	        'fixedlarge': (self.betas, np.log(np.append(self.posterior_variance[1], self.betas[1:]))),
	        'fixedsmall': (self.posterior_variance, self.posterior_log_variance_clipped),
	      }[self.model_var_type]
	      model_variance = self._extract(model_variance, t, x.shape) * tf.ones(x.shape.as_list())
	      model_log_variance = self._extract(model_log_variance, t, x.shape) * tf.ones(x.shape.as_list())
	    else:
	      raise NotImplementedError(self.model_var_type)
	
	    # Mean parameterization
	    _maybe_clip = lambda x_: (tf.clip_by_value(x_, -1., 1.) if clip_denoised else x_)
	    if self.model_mean_type == 'xprev':  # the model predicts x_{t-1}
	      pred_xstart = _maybe_clip(self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output))
	      model_mean = model_output
	    elif self.model_mean_type == 'xstart':  # the model predicts x_0
	      pred_xstart = _maybe_clip(model_output)
	      model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t)
	    elif self.model_mean_type == 'eps':  # the model predicts epsilon
	      pred_xstart = _maybe_clip(self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output))
	      model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t)
	    else:
	      raise NotImplementedError(self.model_mean_type)
	
	    assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
	    if return_pred_xstart:
	      return model_mean, model_variance, model_log_variance, pred_xstart
	    else:
	      return model_mean, model_variance, model_log_variance


	# 损失函数的计算过程
	def training_losses(self, denoise_fn, x_start, t, noise=None):
	    assert t.shape == [x_start.shape[0]]
	    
	    # 随机生成一个噪音
	    if noise is None:
	      noise = tf.random_normal(shape=x_start.shape, dtype=x_start.dtype)
	    assert noise.shape == x_start.shape and noise.dtype == x_start.dtype
	    
	    # 将随机生成的噪音加到x_start上得到第t步的带噪图像
	    x_t = self.q_sample(x_start=x_start, t=t, noise=noise)
		
		# 有两种损失函数的方法,'kl'和'mse',并且这两种方法差别并不明显。
	    if self.loss_type == 'kl':  # the variational bound
	      losses = self._vb_terms_bpd(
	        denoise_fn=denoise_fn, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, return_pred_xstart=False)
	    
	    elif self.loss_type == 'mse':  # unweighted MSE
	      assert self.model_var_type != 'learned'
	      target = {
	        'xprev': self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0],
	        'xstart': x_start,
	        'eps': noise
	      }[self.model_mean_type]
	      model_output = denoise_fn(x_t, t)
	      assert model_output.shape == target.shape == x_start.shape
	      losses = nn.meanflat(tf.squared_difference(target, model_output))
	    else:
	      raise NotImplementedError(self.loss_type)
	
	    assert losses.shape == t.shape
	    return losses
	    
	# 计算两个高斯分布的KL散度,代码中的logvar1,logvar2为方差的对数
	def normal_kl(mean1, logvar1, mean2, logvar2):
	  """
	  KL divergence between normal distributions parameterized by mean and log-variance.
	  """
	  return 0.5 * (-1.0 + logvar2 - logvar1 + tf.exp(logvar1 - logvar2)
	                + tf.squared_difference(mean1, mean2) * tf.exp(-logvar2))
	
	# 使用'kl'方法计算损失函数
	def _vb_terms_bpd(self, denoise_fn, x_start, x_t, t, *, clip_denoised: bool, return_pred_xstart: bool):
	    true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)
	    model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(
	      denoise_fn, x=x_t, t=t, clip_denoised=clip_denoised, return_pred_xstart=True)
	    kl = normal_kl(true_mean, true_log_variance_clipped, model_mean, model_log_variance)
	    kl = nn.meanflat(kl) / np.log(2.)
	
	    decoder_nll = -utils.discretized_gaussian_log_likelihood(
	      x_start, means=model_mean, log_scales=0.5 * model_log_variance)
	    assert decoder_nll.shape == x_start.shape
	    decoder_nll = nn.meanflat(decoder_nll) / np.log(2.)
	
	    # At the first timestep return the decoder NLL, otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
	    assert kl.shape == decoder_nll.shape == t.shape == [x_start.shape[0]]
	    output = tf.where(tf.equal(t, 0), decoder_nll, kl)
	    return (output, pred_xstart) if return_pred_xstart else output

接下来是推理过程。

def p_sample(self, denoise_fn, *, x, t, noise_fn, clip_denoised=True, return_pred_xstart: bool):
    """
    Sample from the model
    """
    # 使用深度学习模型,根据x^t和t估算出x^{t-1}的均值和分布
    model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(
      denoise_fn, x=x, t=t, clip_denoised=clip_denoised, return_pred_xstart=True)
    noise = noise_fn(shape=x.shape, dtype=x.dtype)
    assert noise.shape == x.shape
    # no noise when t == 0
    nonzero_mask = tf.reshape(1 - tf.cast(tf.equal(t, 0), tf.float32), [x.shape[0]] + [1] * (len(x.shape) - 1))
    
    # 当t>0时,模型估算出的结果还要加上一个高斯噪音,因为要继续循环。当t=0时,循环停止,因此不需要再添加噪音了,输出最后的结果。
    sample = model_mean + nonzero_mask * tf.exp(0.5 * model_log_variance) * noise
    assert sample.shape == pred_xstart.shape
    return (sample, pred_xstart) if return_pred_xstart else sample

def p_sample_loop(self, denoise_fn, *, shape, noise_fn=tf.random_normal):
    """
    Generate samples
    """
    assert isinstance(shape, (tuple, list))
	# 生成总的布数T
    i_0 = tf.constant(self.num_timesteps - 1, dtype=tf.int32)
    # 随机生成一个噪音作为p(x^T)
    img_0 = noise_fn(shape=shape, dtype=tf.float32)
    # 循环T次,得到最终的图像
    _, img_final = tf.while_loop(
      cond=lambda i_, _: tf.greater_equal(i_, 0),
      body=lambda i_, img_: [
        i_ - 1,
        self.p_sample(
          denoise_fn=denoise_fn, x=img_, t=tf.fill([shape[0]], i_), noise_fn=noise_fn, return_pred_xstart=False)
      ],
      loop_vars=[i_0, img_0],
      shape_invariants=[i_0.shape, img_0.shape],
      back_prop=False
    )
    assert img_final.shape == shape
    return img_final

http://www.kler.cn/a/597196.html

相关文章:

  • 黑鲨外设2025春季新品发布会:全球首款“冷暖双控”鼠标亮相!
  • C++ 项目实战书店销售记录统计程序(十)
  • Redis 事件机制详解
  • Go语言反射机制在数据库同步中的实战应用 —— 动态赋值与类型转换详解
  • JVM 知识点梳理
  • Python Django入门(建立项目)
  • 【数据分享】我国乡镇(街道)行政区划数据(免费获取/Shp格式)
  • C语言入门教程100讲(8)算术运算符
  • 深度学习--概率
  • kind(Kubernetes IN Docker)
  • git的底层原理
  • 设计和布局硬件电路是嵌入式系统开发的重要环节
  • 学习记录-js进阶-性能优化
  • 安全守护:反光衣检测技术的革新之路
  • Python深度学习环境配置指南:PyTorch、CUDA、cuDNN详解
  • SSH密钥认证 + 文件系统权限控制 + Git仓库配置+封存与解封GIT仓库
  • Redis 全攻略:从基础操作到 Spring Boot 集成实战
  • uniapp可拖拽消息数徽标draggable-badge,仿手机qq聊天列表未读数徽标动效
  • 【第12节】windows sdk编程:动态链接库与静态库
  • AI代码编辑器:Cursor和Trae