当前位置: 首页 > article >正文

【leetcode题解】链表

目录

 链表

两数相加

两两交换链表中的节点

重排链表

合并 K 个升序链表(困难)

K 个一组翻转链表


 链表

1. 常用技巧

  1. 画图!!!(直观+形象,便于我们理解)
  2. 引入虚拟“头”节点(便于处理边界情况;方便我们对链表进行操作)
  3. 不要吝啬空间,大胆去定义变量
  4. 快慢双指针(判环;找链表中环的入口;找链表中倒数第n个节点)

2. 链表中的常用操作

  1. 创建一个新节点 new
  2. 尾插
  3. 头插(逆序链表)
两数相加

2. 两数相加 - 力扣(LeetCode)

/**
 * Definition for singly-linked list.
 * public class ListNode {
 * int val;
 * ListNode next;
 * ListNode() {}
 * ListNode(int val) { this.val = val; }
 * ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
        ListNode cur1 = l1, cur2 = l2;
        ListNode newHead = new ListNode(0);// 创建一个虚拟头节点,方便记录结果
        ListNode prev = newHead;// 尾插操作的尾指针
        int t = 0;// 记录进位
        while (cur1 != null || cur2 != null || t != 0) {
            // 先加上第一个链表
            if (cur1 != null) {
                t += cur1.val;
                cur1 = cur1.next;
            }
            // 再加上第二个链表
            if (cur2 != null) {
                t += cur2.val;
                cur2 = cur2.next;
            }
            prev.next = new ListNode(t % 10);
            prev = prev.next;
            t /= 10;
        }
        return newHead.next;//
    }
}
两两交换链表中的节点

24. 两两交换链表中的节点 - 力扣(LeetCode)

解法一:递归

解法二:循环、迭代(模拟)

/**
 * Definition for singly-linked list.
 * public class ListNode {
 * int val;
 * ListNode next;
 * ListNode() {}
 * ListNode(int val) { this.val = val; }
 * ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode swapPairs(ListNode head) {
        if (head == null || head.next == null)// 空链表或只有一个结点的链表
            return head;
        ListNode newhead = new ListNode(0);// 虚拟“头”节点
        newhead.next = head;
        ListNode prev = newhead, cur = prev.next, next = cur.next, nnext = next.next;
        while (cur != null && next != null) {
            // 1. 交换节点
            prev.next = next;
            next.next = cur;
            cur.next = nnext;
            // 2. 修改指针
            prev = cur;// 注意顺序
            cur = nnext;
            if (cur != null)
                next = cur.next;
            if (next != null)
                nnext = next.next;
        }
        return newhead.next;
    }
}
重排链表

143. 重排链表 - 力扣(LeetCode)

解法:模拟

1. 找到链表的中间节点(快慢双指针)

2. 把后面的部分逆序(反转链表:双指针;头插法)

3. 合并两个链表(双指针)

/**
 * Definition for singly-linked list.
 * public class ListNode {
 * int val;
 * ListNode next;
 * ListNode() {}
 * ListNode(int val) { this.val = val; }
 * ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public void reorderList(ListNode head) {
        // 处理边界情况
        if (head == null || head.next == null || head.next.next == null)
            return;
        // 找链表的中间节点
        ListNode fast = head, slow = head;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
        }
        // 此时,slow指向中间节点
        // 2. 把slow后面的部分逆序 - 头插法
        ListNode newhead = new ListNode(0);// 虚拟头节点
        ListNode cur = slow.next;//
        ListNode prev = null;
        slow.next = null;// 把两个链表分离
        while (cur != null) {
            ListNode next = cur.next;// 保存下一个节点
            cur.next = newhead.next;
            newhead.next = cur;
            cur = next;
        }
        // 3. 合并两个链表 - 双指针
        ListNode cur1 = head, cur2 = newhead.next;
        ListNode ret = new ListNode(0);
        prev = ret;
        while (cur1 != null) {
            // 先放第一个链表
            prev.next = cur1;
            prev = cur1;
            cur1 = cur1.next;
            // 合并第二个链表
            if (cur2 != null) {
                prev.next = cur2;
                prev = cur2;
                cur2 = cur2.next;
            }
        }

    }
}
合并 K 个升序链表(困难)

23. 合并 K 个升序链表 - 力扣(LeetCode)

解法一:暴力解法(不推荐)

解法二:利用优先级队列做优化

/**
 * Definition for singly-linked list.
 * public class ListNode {
 * int val;
 * ListNode next;
 * ListNode() {}
 * ListNode(int val) { this.val = val; }
 * ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        // 创建一个小根堆
        PriorityQueue<ListNode> heap = new PriorityQueue<>((v1, v2) -> v1.val - v2.val);
        // 把所有的头节点放进小根堆
        for (ListNode head : lists) {
            if (head != null)
                heap.offer(head);
        }
        // 合并链表
        ListNode ret = new ListNode(0);
        ListNode prev = ret;
        while (!heap.isEmpty()) {
            ListNode t = heap.poll();
            prev.next = t;
            prev = t;
            if (t.next != null)
                heap.offer(t.next);
        }
        return ret.next;
    }
}

解法三:分治 - 递归

/**
 * Definition for singly-linked list.
 * public class ListNode {
 * int val;
 * ListNode next;
 * ListNode() {}
 * ListNode(int val) { this.val = val; }
 * ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        return merge(lists, 0, lists.length - 1);
    }

    public ListNode merge(ListNode[] lists, int left, int right) {
        if (left > right)
            return null;
        if (left == right)
            return lists[left];
        // 平分数组
        int mid = (left + right) / 2;
        // [left,mid] [mid+1,right]
        // 处理左右两部分
        ListNode l1 = merge(lists, left, mid);
        ListNode l2 = merge(lists, mid + 1, right);
        return mergeTwo(l1, l2);
    }

    public ListNode mergeTwo(ListNode l1, ListNode l2) {
        // 合并两个链表
        if (l1 == null)
            return l2;
        if (l2 == null)
            return l1;
        ListNode head = new ListNode(0);
        ListNode cur1 = l1, cur2 = l2, prev = head;
        while (cur1 != null && cur2 != null) {
            if (cur1.val < cur2.val) {//
                prev.next = cur1;
                prev = cur1;
                cur1 = cur1.next;
            } else {
                prev.next = cur2;
                prev = cur2;
                cur2 = cur2.next;
            }
        }
        if (cur1 != null)
            prev.next = cur1;
        if (cur2 != null)
            prev.next = cur2;
        return head.next;
    }
}
K 个一组翻转链表

25. K 个一组翻转链表 - 力扣(LeetCode)

解法:模拟

  1. 先求出需要逆序多少组:n
  2. 重复n次,长度为k的链表的逆序即可(头插法)
/**
 * Definition for singly-linked list.
 * public class ListNode {
 * int val;
 * ListNode next;
 * ListNode() {}
 * ListNode(int val) { this.val = val; }
 * ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode reverseKGroup(ListNode head, int k) {
        // 1. 先求出需要逆序多少组
        int n = 0;
        ListNode cur = head;
        while (cur != null) {
            cur = cur.next;
            n++;
        }
        n /= k;
        // 2. 重复n次:长度为k的链表的逆序
        ListNode newhead = new ListNode(0);
        ListNode prev = newhead;
        cur = head;
        for (int i = 0; i < n; i++) {
            ListNode tmp = cur;
            for (int j = 0; j < k; j++) {
                // 头插
                ListNode next = cur.next;
                cur.next = prev.next;
                prev.next = cur;
                cur = next;
            }
            prev = tmp;
        }
        // 把后面不需要逆序的部分连接上
        prev.next = cur;
        return newhead.next;
    }
}

http://www.kler.cn/a/597797.html

相关文章:

  • mysql5.7及mysql8的一些特性
  • python包和模块
  • 深入理解指针(1)(C语言版)
  • 计算机操作系统(六) 进程控制与进程通信 (附带图谱更好对比理解)
  • 指针,数组 易混题解析(一)
  • 在 .NET 9.0 Web API 中实现 Scalar 接口文档及JWT集成
  • JavaEE-MyBatis概述第一个程序
  • 生活电子常识-deepseek-r1本地化部署+ui界面搭建
  • 练习:自动驾驶
  • xy轴不等比缩放问题——AUTOCAD c#二次开发
  • 【leetcode题解】宽搜(BFS)
  • AI 驱动视频处理与智算革新:蓝耘MaaS释放海螺AI视频生产力
  • HTTP/HTTPS 中 GET 请求和 POST 请求的区别与联系
  • Python基于深度学习的中文情感分析系统(V2.0,附源码,文档说明)
  • 汽车制造MES
  • langfuse追踪Trace
  • pyecharts在jupyter notebook中不能够渲染图表问题。
  • Second-Me: 训练你的 AI 自我以连接世界
  • android音频概念解析
  • 2025年2月-3月后端go开发找工作感悟