AF3 Rotation 类解读
Rotation
类(rigid_utils 模块
)是 AlphaFold3 中用于 3D旋转 的核心组件,支持两种旋转表示: 1️⃣ 旋转矩阵 (3x3)
2️⃣ 四元数 (quaternion, 4元向量)
👉 设计目标:
-
允许灵活选择 旋转矩阵 或 四元数
-
封装了常用的 旋转操作(组合、逆旋转、应用到点上等)
-
像
torch.Tensor
一样,支持索引、拼接、广播等操作
源代码:
class Rotation:
"""
A 3D rotation. Depending on how the object is initialized, the
rotation is represented by either a rotation matrix or a
quaternion, though both formats are made available by helper functions.
To simplify gradient computation, the underlying format of the
rotation cannot be changed in-place. Like Rigid, the class is designed
to mimic the behavior of a torch Tensor, almost as if each Rotation
object were a tensor of rotations, in one format or another.
"""
def __init__(self,
rot_mats: Optional[torch.Tensor] = None,
quats: Optional[torch.Tensor] = None,
normalize_quats: bool = True,
):
"""
Args:
rot_mats:
A [*, 3, 3] rotation matrix tensor. Mutually exclusive with
quats
quats:
A [*, 4] quaternion. Mutually exclusive with rot_mats. If
normalize_quats is not True, must be a unit quaternion
normalize_quats:
If quats is specified, whether to normalize quats
"""
if((rot_mats is None and quats is None) or
(rot_mats is not None and quats is not None)):
raise ValueError("Exactly one input argument must be specified")
if((rot_mats is not None and rot_mats.shape[-2:] != (3, 3)) or
(quats is not None and quats.shape[-1] != 4)):
raise ValueError(
"Incorrectly shaped rotation matrix or quaternion"
)
# Force full-precision
if(quats is not None):
quats = quats.to(dtype=torch.float32)
if(rot_mats is not None):
rot_mats = rot_mats.to(dtype=torch.float32)
if(quats is not None and normalize_quats):
quats = quats / torch.linalg.norm(quats, dim=-1, keepdim=True)
self._rot_mats = rot_mats
self._quats = quats
@staticmethod
def identity(
shape,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
fmt: str = "quat",
) -> Rotation:
"""
Returns an identity Rotation.
Args:
shape:
The "shape" of the resulting Rotation object. See documentation
for the shape property
dtype:
The torch dtype for the rotation
device:
The torch device for the new rotation
requires_grad:
Whether the underlying tensors in the new rotation object
should require gradient computation
fmt:
One of "quat" or "rot_mat". Determines the underlying format
of the new object's rotation
Returns:
A new identity rotation
"""
if(fmt == "rot_mat"):
rot_mats = identity_rot_mats(
shape, dtype, device, requires_grad,
)
return Rotation(rot_mats=rot_mats, quats=None)
elif(fmt == "quat"):
quats = identity_quats(shape, dtype, device, requires_grad)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError(f"Invalid format: f{fmt}")
# Magic methods
def __getitem__(self, index: Any) -> Rotation:
"""
Allows torch-style indexing over the virtual shape of the rotation
object. See documentation for the shape property.
Args:
index:
A torch index. E.g. (1, 3, 2), or (slice(None,))
Returns:
The indexed rotation
"""
if type(index) != tuple:
index = (index,)
if(self._rot_mats is not None):
rot_mats = self._rot_mats[index + (slice(None), slice(None))]
return Rotation(rot_mats=rot_mats)
elif(self._quats is not None):
quats = self._quats[index + (slice(None),)]
return Rotation(quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def __mul__(self,
right: torch.Tensor,
) -> Rotation:
"""
Pointwise left multiplication of the rotation with a tensor. Can be
used to e.g. mask the Ro