当前位置: 首页 > article >正文

深度学习笔记19-YOLOv5-C3模块实现(Pytorch)

  •   🍨 本文为🔗365天深度学习训练营中的学习记录博客
  •  🍖 原作者:K同学啊 

一、前期工作

1.导入数据并读取

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

import os,PIL,random,pathlib

data_dir = 'D:\TensorFlow1\T3\weather_photos'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[4] for path in data_paths]
classeNames

 

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
total_data

total_data.class_to_idx

2.划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

    二、搭建模型

    import torch.nn.functional as F
    
    def autopad(k, p=None):  # kernel, padding
        # Pad to 'same'
        if p is None:
            p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
        return p
    
    class Conv(nn.Module):
        # Standard convolution
        def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
            super().__init__()
            self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
            self.bn = nn.BatchNorm2d(c2)
            self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
    
        def forward(self, x):
            return self.act(self.bn(self.conv(x)))
    
    class Bottleneck(nn.Module):
        # Standard bottleneck
        def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
            super().__init__()
            c_ = int(c2 * e)  # hidden channels
            self.cv1 = Conv(c1, c_, 1, 1)
            self.cv2 = Conv(c_, c2, 3, 1, g=g)
            self.add = shortcut and c1 == c2
    
        def forward(self, x):
            return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
    
    class C3(nn.Module):
        # CSP Bottleneck with 3 convolutions
        def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
            super().__init__()
            c_ = int(c2 * e)  # hidden channels
            self.cv1 = Conv(c1, c_, 1, 1)
            self.cv2 = Conv(c1, c_, 1, 1)
            self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
            self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
    
        def forward(self, x):
            return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
    
    class model_K(nn.Module):
        def __init__(self):
            super(model_K, self).__init__()
            
            # 卷积模块
            self.Conv = Conv(3, 32, 3, 2) 
            
            # C3模块1
            self.C3_1 = C3(32, 64, 3, 2)
            
            # 全连接网络层,用于分类
            self.classifier = nn.Sequential(
                nn.Linear(in_features=802816, out_features=100),
                nn.ReLU(),
                nn.Linear(in_features=100, out_features=4)
            )
            
        def forward(self, x):
            x = self.Conv(x)
            x = self.C3_1(x)
            x = torch.flatten(x, start_dim=1)
            x = self.classifier(x)
    
            return x
    model = model_K()
    model

    # 统计模型参数量以及其他指标
    import torchsummary as summary
    summary.summary(model, (3, 224, 224))

    三、训练模型

    1.编写训练函数

    # 训练循环
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小
        num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
    
        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
        for X, y in dataloader:  # 获取图片及其标签
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
                
        train_acc  /= size
        train_loss /= num_batches
    
        return train_acc, train_loss

    2.编写测试函数

    def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小
        num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
        test_loss, test_acc = 0, 0
        
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
                
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
        test_acc  /= size
        test_loss /= num_batches
    
        return test_acc, test_loss

    3.正式训练

    import copy
    
    optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
    loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    
    epochs     = 20
    
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标
    
    for epoch in range(epochs):
        
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
        
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        
        # 保存最佳模型到 best_model
        if epoch_test_acc > best_acc:
            best_acc   = epoch_test_acc
            best_model = copy.deepcopy(model)
        
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
        
        # 获取当前的学习率
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                              epoch_test_acc*100, epoch_test_loss, lr))
        
    # 保存最佳模型到文件中
    PATH = './best_modelyolo.pth'  # 保存的参数文件名
    torch.save(best_model.state_dict(), PATH)
    
    print('Done')

     四、结果可视化

    1.loss与acc图

    import matplotlib.pyplot as plt
    #隐藏警告
    import warnings
    warnings.filterwarnings("ignore")               #忽略警告信息
    plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
    plt.rcParams['figure.dpi']         = 100        #分辨率
    
    from datetime import datetime
    current_time = datetime.now() # 获取当前时间
    
    epochs_range = range(epochs)
    
    plt.figure(figsize=(12, 3))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()

    2.模型评估

    best_model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
    epoch_test_acc, epoch_test_loss

    # 查看是否与我们记录的最高准确率一致
    epoch_test_acc

    五、总结

    1. YOLO的C3模块


    http://www.kler.cn/a/613702.html

    相关文章:

  • Python 爬虫:一键解锁 3GPP 标准协议下载难题
  • XCode16 在Other LInker Flags中,添加-ld64与不添加,有什么区别?
  • sql-labs靶场 less-1
  • hadoop客户端环境准备
  • Linux Shell 脚本使用YAD工具实现Shell图形化界面
  • SpringSecurity过滤器链:核心过滤器的执行顺序与职责
  • spring security设置多个数据源和登录验证码
  • 故障识别 | 基于改进螂优化算法(MSADBO)优化变分模态提取(VME)结合稀疏最大谐波噪声比解卷积(SMHD)进行故障诊断识别,matlab代码
  • MySQL Explain 分析 SQL 执行计划
  • 数据设计(范式、步骤)
  • 2025跳槽学习计划
  • 速卖通历史价格数据获取:API合规调用与爬虫方案风险对比
  • Maven版本统一管理
  • Cursor生成的UI太丑?如何减少UI拉扯?
  • WEB或移动端常用交互元素及组件 | Axure / 元件类型介绍(表单元件、菜单和表格 、流程元件、标记元件)
  • 一文详解k8s体系架构知识
  • 【Kafka】Kafka4.0在windows上启动
  • Android 蓝牙/Wi-Fi通信协议之:经典蓝牙(BT 2.1/3.0+)介绍
  • STM32 IIC通信
  • uWebSockets开发入门