强引用和弱引用区别
强引用
强引用是使用最普遍的引用。如果一个对象具有强引用,那垃圾回收器绝不会回收它。如下:
Object strongReference = new Object();
当内存空间不足时,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。
如果强引用对象不使用时,需要弱化从而使GC能够回收,如下:
strongReference = null;
显式地设置strongReference对象为null,或让其超出对象的生命周期范围,则gc认为该对象不存在引用,这时就可以回收这个对象。具体什么时候收集这要取决于GC算法。
public void test() {
Object strongReference = new Object();
// 省略其他操作
}
在一个方法的内部有一个强引用,这个引用保存在Java栈中,而真正的引用内容(Object)保存在Java堆中。
当这个方法运行完成后,就会退出方法栈,则引用对象的引用数为0,这个对象会被回收。
但是如果这个strongReference是全局变量时,就需要在不用这个对象时赋值为null,因为强引用不会被垃圾回收。
比如ArraryList类的clear方法中就是通过将引用赋值为null来实现清理工作的:
public void clear() {
modCount++;
// Let gc do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
在ArrayList类中定义了一个私有的变量elementData数组,在调用方法清空数组时可以看到为每个数组内容赋值为null。不同于elementData=null,强引用仍然存在,避免在后续调用 add()等方法添加元素时进行重新的内存分配。使用如clear()方法中释放内存的方法对数组中存放的引用类型特别适用,这样就可以及时释放内存。
弱引用
弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。
String str = new String("abc");
WeakReference<String> weakReference = new WeakReference<>(str);
str = null;
JVM首先将软引用中的对象引用置为null,然后通知垃圾回收器进行回收:
str = null;
System.gc();
注意:如果一个对象是偶尔(很少)的使用,并且希望在使用时随时就能获取到,但又不想影响此对象的垃圾收集,那么你应该用Weak Reference来记住此对象。
下面的代码会让一个弱引用再次变为一个强引用:
String str = new String("abc");
WeakReference<String> weakReference = new WeakReference<>(str);
// 弱引用转强引用
String strongReference = weakReference.get();
同样,弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。
简单测试:
public class GCTarget {
// 对象的ID
public String id;
// 占用内存空间
byte[] buffer = new byte[1024];
public GCTarget(String id) {
this.id = id;
}
protected void finalize() throws Throwable {
// 执行垃圾回收时打印显示对象ID
System.out.println("Finalizing GCTarget, id is : " + id);
}
}
public class GCTarget {
// 对象的ID
public String id;
// 占用内存空间
byte[] buffer = new byte[1024];
public GCTarget(String id) {
this.id = id;
}
protected void finalize() throws Throwable {
// 执行垃圾回收时打印显示对象ID
System.out.println("Finalizing GCTarget, id is : " + id);
}
}
public class WeakReferenceTest {
// 弱引用队列
private final static ReferenceQueue<GCTarget> REFERENCE_QUEUE = new ReferenceQueue<>();
public static void main(String[] args) {
LinkedList<GCTargetWeakReference> gcTargetList = new LinkedList<>();
// 创建弱引用的对象,依次加入链表中
for (int i = 0; i < 5; i++) {
GCTarget gcTarget = new GCTarget(String.valueOf(i));
GCTargetWeakReference weakReference = new GCTargetWeakReference(gcTarget,
REFERENCE_QUEUE);
gcTargetList.add(weakReference);
System.out.println("Just created GCTargetWeakReference obj: " +
gcTargetList.getLast());
}
// 通知GC进行垃圾回收
System.gc();
try {
// 休息几分钟,等待上面的垃圾回收线程运行完成
Thread.sleep(6000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 检查关联的引用队列是否为空
Reference<? extends GCTarget> reference;
while((reference = REFERENCE_QUEUE.poll()) != null) {
if(reference instanceof GCTargetWeakReference) {
System.out.println("In queue, id is: " +
((GCTargetWeakReference) (reference)).id);
}
}
}
}
可见WeakReference对象的生命周期基本由垃圾回收器决定,一旦垃圾回收线程发现了弱引用对象,在下一次GC过程中就会对其进行回收。