当前位置: 首页 > article >正文

深入浅出排序算法之堆排序

目录

1. 算法介绍

2. 执行流程⭐⭐⭐⭐⭐✔

3. 代码实现

4. 性能分析


1. 算法介绍

堆是一种数据结构,可以把堆看成一棵完全二叉树,这棵完全二叉树满足:任何一个非叶结点的值都不大于(或不小于)其左右孩子结点的值。若父亲大孩子小,则这样的堆叫作大顶堆;若父亲小孩子大,则这样的堆叫作小顶堆。

根据堆的定义知道,代表堆的这棵完全二叉树的根结点的值是最大(或最小)的,因此将一个无序序列调整为一个堆,就可以找出这个序列的最大(或最小)值,然后将找出的这个值交换到序列的最后(或最前),这样,有序序列关键字增加1个,无序序列中关键字减少1个,对新的无序序列重复这样的操作,就实现了排序。这就是堆排序的思想。

堆排序中最关键的操作是将序列调整为堆。整个排序的过程就是通过不断调整,使得不符合堆定义的完全二叉树变为符合堆定义的完全二叉树。

2. 执行流程⭐⭐⭐⭐⭐✔

建堆是先从自下而上,从右往左建

初始堆的每一个结点都要满足堆的定义,也就是父节点的值大于左右孩子结点的值!!!

选出最大值,是将根结点和最后一个结点互换,然后继续构建大顶堆!!!

⭐⭐⭐堆顶和最后一个元素交换,才算一趟,也是该趟的最终序列结果!!!

建堆和排序结果是两个阶段,但同属于一趟中。

图示如下:

3. 代码实现

为了三个步骤:

步骤一:先建堆(大根堆或者小根堆)

步骤二:交完堆顶和最后一个元素,然后堆的大小减一

步骤三:向下调整堆

步骤一只需实现一次,步骤二和步骤三循环执行,得到最终的有序序列。

    //开始排序:堆排序分为三个功能 ①开始建堆,②交换,③向下调整,重复②和③步
    public static void heapSort(int[] array,int len){
        int end = len - 1;//确定最后一个结点的下标
        createHeap(array);//建堆
        //当只剩下一个结点的时候,就不需要交换
        while(end > 0){
            //交换
            swap(array,0,end);
            //向下调整
            shiftDown(array,0,end);
            //调整完一个结点,下一个
            end--;
        }
    }
    //交换数据
    public static void swap(int[] array,int i,int j){
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }
    //堆排序(大根堆)
    //从上往下建堆,所以先找父节点,再找孩子结点
    public static void createHeap(int[] array){
        for(int parent = (array.length - 1 - 1) / 2;parent >= 0;parent--){
            shiftDown(array,parent,array.length);
        }
    }
    //向下调整
    public static void shiftDown(int[] array,int parent,int len){
        //定义一个记录孩子下标的变量(左孩子)
        int child = 2 * parent + 1;
        //判断父节点和孩子结点的大小,至少左孩子要存在
        while(child < len){
            //比较左右孩子
            if((child + 1) < len && array[child] < array[child + 1]){
                child++;
            }
            //判断父节点和孩子节点
            if(array[child] > array[parent]){
                swap(array,child,parent);
                parent = child;
                child = 2 * parent + 1;
            }else{
                break;
            }
        }
    }
    public static void main(String[] args) {
        int[] a = {5,4,3,2,1};
        Sort.heapSort(a, a.length);
        for (int x : a) {
            System.out.print(x + " ");
        }
    }

4. 性能分析

时间辅助度空间复杂度
O(N*logN)O(1)
数据不敏感数据不敏感

稳定性:不稳定。

来上解析,怎么计算这个时间复杂度。

(1)步骤一的时间复杂度:首先知道有N个结点开始建堆,这个时间复杂度就是O(N),大家可以去看看这篇文章,里面有讲建堆的时间复杂度。链接如下:

数据结构——堆、堆排序和优先级队列(代码为Java版本)

(2)步骤二和步骤三循环的时间复杂度:那么我第一个结点交换时,需要向下调整为log(N - 1)层;交换第二个结点后,需要向下log(N - 2),接下来就是log(N - 3),log(N - 4),……,log1。所以总的调整次数是log(N - 1) + log(N - 2) + log(N - 3) + log(N - 4) + …… + log1 = log((N - 1)!)。

我们可以在网上看到堆排序的时间复杂度是O(N*logN),这是堆排序的大致估算(我们算时间复杂度都是算个大概),其实log((N - 1)!) 约等于 NlogN。下面是我的证明结果:

① 使用夹逼准则证明:

先求上限:\log \left ( n!\right ) = \sum_{i = 1}^{n}\log \left ( i \right )\leqslant \sum_{i=1}^{n}\log \left ( n \right )=\log n^{n}=O\left (n\log n \right )

再求下限:

因为 n! \geqslant \left ( \frac{n}{2} \right )^{\frac{n}{2}}

所以 \log \left ( n! \right )\geqslant \log \left ( \frac{n}{2} \right )^{\frac{n}{2}}= \frac{n}{2}\log \frac{n}{2}= \frac{n}{2}\log n-\frac{n}{2}\log 2

当 n\geqslant 4 时,\frac{n}{2}\log 2=\frac{1}{4}n\log 4\leqslant \frac{1}{4}n\log n               

② 则有:

\log \left ( n! \right )\geqslant \frac{n}{2}\log n-\frac{n}{2}\log 2\geqslant \frac{n}{2}\log n-\frac{1}{4}n\log n=\frac{1}{4}n\log n\approx \Omega \left ( n\log n \right )     

③结论:\log \left ( n! \right ) 既是 n\log n 的低阶函数,又是 n\log n 的高阶函数,因此是 n\log n 的同阶函数!

(3)由于上面的证明步骤,我们可以知道堆排序的时间复杂度是  O\left ( n\log n \right ) 。

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           


http://www.kler.cn/a/107652.html

相关文章:

  • 数据结构-集合
  • 拦截器实现http请求访问本地图片
  • RS®SZM 倍频器
  • PostgreSQL中的COPY命令:高效数据导入与导出
  • 外星人入侵
  • vue3+vite 前端打包不缓存配置
  • SQL server 代理服务启动和查看
  • ArcEngine二次开发实用函数16:获取GDB中的所有图层的名称
  • rust 创建多线程web server
  • 子集生成算法:给定一个集合,枚举所有可能的子集
  • 使用docker-compose私有化部署 GitLab
  • 5G与医疗:开启医疗技术的新篇章
  • freeRTOS学习day4-中断使用消息队列
  • 软考系列(系统架构师)- 2012年系统架构师软考案例分析考点
  • Hive常用DDL操作
  • 如何隐藏woocommerce 后台header,woocommerce-layout__header
  • vue中,js获取svg内容并填充到svg图中
  • 信道数据传输速率、信号传播速度——参考《天勤计算机网络》
  • Spring Boot进阶(94):从入门到精通:Spring Boot和Prometheus监控系统的完美结合
  • windows下OOM排查
  • Vite多页面应用简单构建
  • [C++]——带你学习类和对象
  • 电脑报错由于找不到vcruntime140.dll文件怎么修复
  • 在全新ubuntu上用gpu训练paddleocr模型遇到的坑与解决办法
  • python爬虫request和BeautifulSoup使用
  • 在DOS或Windows环境中,使用工具Debug