当前位置: 首页 > article >正文

python爬虫request和BeautifulSoup使用

request使用

1.安装request

pip install request

image-20231028221900255

2.引入库

import requests

3.编写代码

发送请求

我们通过以下代码可以打开豆瓣top250的网站

response = requests.get(f"https://movie.douban.com/top250"

但因为该网站加入了反爬机制,所以我们需要在我们的请求报文的头部加入User-Agent的信息

headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
}

response = requests.get(f"https://movie.douban.com/top250",headers=headers)

User-Agent可以通过访问网站时按f12查看获取

image-20231028222657590

我们可以通过response的ok属性判断是否请求成功

import requests
headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
}

response = requests.get(f"https://movie.douban.com/top250",headers=headers)
if response.ok:
    print("请求成功!")
else:
    print("请求失败!")

此时如果请求成功,控制台就会打印请求成功!

image-20231028222826786

获取网页的html

我们可以通过response的text的属性来获取网页的html

import requests
headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
}

response = requests.get(f"https://movie.douban.com/top250",headers=headers)
if response.ok:
    html = response.text
    print(html)
else:
    print("请求失败!")

此时请求成功就会打印页面的html了

image-20231028223025357

BeautifulSoup使用

Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据。官方解释如下:

Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。它是一个工具箱,通过解析文档为用户提供需要抓取的数据,因为简单,所以不需要多少代码就可以写出一个完整的应用程序。

Beautiful Soup自动将输入文档转换为Unicode编码,输出文档转换为utf-8编码。你不需要考虑编码方式,除非文档没有指定一个编码方式,这时,Beautiful Soup就不能自动识别编码方式了。然后,你仅仅需要说明一下原始编码方式就可以了。

Beautiful Soup已成为和lxml、html6lib一样出色的python解释器,为用户灵活地提供不同的解析策略或强劲的速度。

简单的说,我们可以拿他来解析html页面,来获取html的元素

1.安装BeautifulSoup

要使用BeautifulSoup4需要先安装lxml,再安装bs4

pip install bs4
pip install bs4

image-20231028223709504

2.引入库

from bs4 import BeautifulSoup

3.编写代码

获取元素

我们通过BeautifulSoup()就可以得到解析后的soup对象

    soup = BeautifulSoup(html, "html.parser")

使用findAll函数就可以找到我们想要的元素,例如:我们想找到span标签中,class为title的元素

   all_titls = soup.findAll("span", attrs={"class": "title"})

此时我们代码如下

from bs4 import BeautifulSoup
import requests
headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
}

response = requests.get(f"https://movie.douban.com/top250",headers=headers)
if response.ok:
    html = response.text
    soup = BeautifulSoup(html, "html.parser")
    all_titls = soup.findAll("span", attrs={"class": "title"})
    print(all_titls)
else:
    print("请求失败!")

运行结果image-20231028224135059

元素处理

我们虽然找到了span标签中,class为title的元素,但我们不需要span标签中的内容,所以我们需要对他进行处理

首先我们发现,all_titls其实是一个数组,所以我们可以遍历他,这样就可以得到每一个span元素,通过string的属性就可以得到span标签中间的内容

from bs4 import BeautifulSoup
import requests
headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
}

response = requests.get(f"https://movie.douban.com/top250",headers=headers)
if response.ok:
    html = response.text
    soup = BeautifulSoup(html, "html.parser")
    all_titls = soup.findAll("span", attrs={"class": "title"})
    for title in all_titls:
        title_string = title.string
        print(title_string)
else:
    print("请求失败!")

此时我们发现,我们虽然得到span标签中间的内容,但其中含有电影名字的英文名这是我们不需要的

image-20231028224526419

通过观察我们发现,每个英文名前都是带有/的,所以我们可以判断其是否含有"/"来进行过滤

from bs4 import BeautifulSoup
import requests
headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
}

response = requests.get(f"https://movie.douban.com/top250",headers=headers)
if response.ok:
    html = response.text
    soup = BeautifulSoup(html, "html.parser")
    all_titls = soup.findAll("span", attrs={"class": "title"})
    for title in all_titls:
        title_string = title.string
        if "/" not in title_string:
            print(title_string)
else:
    print("请求失败!")

image-20231028224813650

整合

虽然此时我们打印出了我们想要的数据,但这只是其中一页的,且只是打印,并没有存入数据库或者某个文件里

打印所有页

通过观察第二页的路径,我们发现在点击第二页时系统会传一个start的属性,这个属性除以25在加1就是我们需要的页数,反过来就是 (页数-1)*25 = start

image-20231028224946341

所以我们可以通过for循环,依次传入0,25,50…

from bs4 import BeautifulSoup
import requests
headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
}

for start_num in range(0,250,25):
    response = requests.get(f"https://movie.douban.com/top250?start={start_num}",headers=headers)
    if response.ok:
        html = response.text
        soup = BeautifulSoup(html,"html.parser")
        all_titls = soup.findAll("span",attrs={"class":"title"})
        for title in all_titls:
            title_string = title.string
            if "/" not in title_string:
                print(title_string)
    else:
        print("请求失败!")

这样我们就得到了所有的电影名

image-20231028225342725

存入txt

这里我们演示将数据存入记事本中,我们定义个数组,将所有电影的名字存入该数组,最后遍历数组写入txt文件即可

from bs4 import BeautifulSoup
import requests
headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36"
}
titles = []
for start_num in range(0,250,25):
    response = requests.get(f"https://movie.douban.com/top250?start={start_num}",headers=headers)
    if response.ok:
        html = response.text
        soup = BeautifulSoup(html,"html.parser")
        all_titls = soup.findAll("span",attrs={"class":"title"})
        for title in all_titls:
            title_string = title.string
            if "/" not in title_string:
                titles.append(title_string)
    else:
        print("请求失败!")
with open(r'豆瓣top250.txt', 'w') as f:
    for i in titles:
        f.write(i + '\n')

image-20231028225627360


http://www.kler.cn/a/107633.html

相关文章:

  • 力扣 岛屿数量
  • 基于STM32的智能家居蓝牙系统(论文+源码)
  • springCloud特色知识记录(基于黑马教程2024年)
  • nvim 打造成可用的IDE(2)
  • Vue.js组件开发-如何使用moment.js
  • https原理
  • 在DOS或Windows环境中,使用工具Debug
  • 【斗罗二】霍雨浩迷惑审查,戴华斌故意挑衅,惨败者屈服下跪
  • 金融领域:怎么保持电力系统连续供应?
  • 解决cloudflare pages部署静态页面发生404错误的问题
  • 【AD9361 数字接口CMOS LVDSSPI】B 并行数据之CMOS 续
  • 如何选择最适合 Android 的 SD 卡恢复软件?
  • C++入门精讲——入门看完这一篇就够了
  • rhcsa安装及配置
  • 如何使用ffmpeg制作透明背景的视频
  • Linux下自动挂载U盘或者USB移动硬盘
  • eval()函数的用法,计算字符串中的值,模板字符串进行计算
  • CTF-Crypto学习记录-第四天 “ “ --- SHA1安全散列算法,实现原理。
  • mac安装并使用wireshark
  • Rust实现基于Tokio的限制内存占用的channel
  • 【C++】类与对象 第二篇(构造函数,析构函数,拷贝构造,赋值重载)
  • 前端小技巧: 实现 LRU 缓存算法功能
  • Kafka-Java四:Spring配置Kafka消费者提交Offset的策略
  • vue如何使用路由拦截器
  • 数据结构 C语言 2.1 线性表抽象数据类型 2.2 小议顺序表
  • Tp框架如何使用事务和锁,还有查询缓存