当前位置: 首页 > article >正文

剑指JUC原理-5.synchronized底层原理

Java对象头

以32位虚拟机为例:

普通对象

在这里插入图片描述

在Java虚拟机中,每个对象都有一个对象头(Object Header),其中包含了一些用于管理对象的元数据信息。对象头通常由两部分组成:mark word(标记字)和klass word(类指针字)。

Mark Word(标记字):Mark Word是用于存储对象的运行时数据和锁相关的信息。它的具体结构和含义可能因不同的虚拟机实现而有所差异,但通常包含以下信息:

  • 对象的哈希码(Hash Code):用于快速比较对象是否相等。
  • GC相关信息:标记对象是否被垃圾回收器标记为可回收、是否被锁定等。
  • 锁状态:用于支持对象的同步机制,如偏向锁、轻量级锁、重量级锁等。
  • 并发标记:用于并发垃圾回收算法中的标记过程。

Klass Word(类指针字):Klass Word是指向对象所属类的指针。它指向对象的类元数据(Class Metadata),包含了类的方法、字段、父类、接口等信息。通过Klass Word,可以确定对象的类型,并进行动态分派,即在运行时根据对象的实际类型调用相应的方法。

对象头中的mark word和klass word在Java虚拟机中起着重要的作用,用于管理对象的状态、锁定机制和类型信息等。它们是实现Java语言特性和虚拟机功能的关键元素。

通过看对象头的位数,占8个字节

其中int占 4 个字节,Integer 占用4个字节 + 8个字节的对象头,一个Integer大int三倍,所以在内存很敏感的场景,建议使用int。

Mark Word结构

在这里插入图片描述

这个部分后面再详细讲解,这里其实可以理解为各种锁的状态

Monitor原理

Monitor 被翻译为监视器管程

每个 Java 对象都可以关联一个 Monitor 对象,如果使用 synchronized 给对象上锁(重量级)之后,该对象头的
Mark Word 中就被设置指向 Monitor 对象的指针

Monitor 结构如下

在这里插入图片描述

  • 刚开始 Monitor 中 Owner 为 null
  • 当 Thread-2 执行 synchronized(obj) 就会将 Monitor 的所有者 Owner 置为 Thread-2,Monitor中只能有一
    个 Owner
  • 在 Thread-2 上锁的过程中,如果 Thread-3,Thread-4,Thread-5 也来执行 synchronized(obj),就会进入
    EntryList BLOCKED
  • Thread-2 执行完同步代码块的内容,然后唤醒 EntryList 中等待的线程来竞争锁,竞争的时是非公平的
  • 图中 WaitSet 中的 Thread-0,Thread-1 是之前获得过锁,但条件不满足进入 WAITING 状态的线程,后面讲
    wait-notify 时会分析

注意:

  • synchronized 必须是进入同一个对象(每个对象关联一个monitor )的 monitor 才有上述的效果
  • 不加 synchronized 的对象不会关联监视器,不遵从以上规则

synchronized 原理

static final Object lock = new Object();
static int counter = 0;
public static void main(String[] args) {
 synchronized (lock) {
 counter++;
 }
}

对应的字节码为:

public static void main(java.lang.String[]);
 descriptor: ([Ljava/lang/String;)V
 flags: ACC_PUBLIC, ACC_STATIC
Code:
 stack=2, locals=3, args_size=1
 0: getstatic #2 // <- lock引用 (synchronized开始)拿到lock锁
 3: dup			// 复制一份
 4: astore_1 // lock引用 -> slot 1 将其存储到临时变量slot1里面,以后解锁时使用
 5: monitorenter // 将 lock对象 MarkWord 置为 Monitor 指针
 6: getstatic #3 // <- i
 9: iconst_1 // 准备常数 1
 10: iadd // +1
 11: putstatic #3 // -> i     6 9 10 11 做的是i++操作
 14: aload_1 // <- lock引用	拿到slot1中临时的引用地址了
 15: monitorexit // 将 lock对象 MarkWord 重置, 唤醒 EntryList
 16: goto 24	// 执行到24 代码就结束了
 19: astore_2 // e -> slot 2 
 20: aload_1 // <- lock引用
 21: monitorexit // 将 lock对象 MarkWord 重置, 唤醒 EntryList
 22: aload_2 // <- slot 2 (e)
 23: athrow // throw e		而19~23涉及到 发生异常时 锁时如何释放的
 24: return
 Exception table:
 from to target type
 6 16 19 any
 19 22 19 any
 LineNumberTable:
 line 8: 0
 line 9: 6
 line 10: 14
 line 11: 24
 LocalVariableTable:
 Start Length Slot Name Signature
 0 25 0 args [Ljava/lang/String;
 StackMapTable: number_of_entries = 2
 frame_type = 255 /* full_frame */
 offset_delta = 19
 locals = [ class "[Ljava/lang/String;", class java/lang/Object ]
 stack = [ class java/lang/Throwable ]
 frame_type = 250 /* chop */
 offset_delta = 4

从头开始读 这段字节码:本质上就是获取锁,保存引用,然后讲锁对象的markword与monitor关联,然后执行锁中的内容,最终锁内容结束,释放并唤醒EntryList中的其他线程。

synchronized进阶小故事

  • 老王 - JVM
  • 小南 - 线程
  • 小女 - 线程
  • 房间 - 对象
  • 房间门上 - 防盗锁 - Monitor
  • 房间门上 - 小南书包 - 轻量级锁
  • 房间门上 - 刻上小南大名 - 偏向锁
  • 批量重刻名 - 一个类的偏向锁撤销到达 20 阈值
  • 不能刻名字 - 批量撤销该类对象的偏向锁,设置该类不可偏向

小南要使用房间保证计算不被其它人干扰(原子性),最初,他用的是防盗锁(monitor),当上下文切换时,锁住门。这样,
即使他离开了,别人也进不了门,他的工作就是安全的。

但是,很多情况下没人跟他来竞争房间的使用权。小女是要用房间,但使用的时间上是错开的,小南白天用,小女
晚上用。每次上锁太麻烦了,有没有更简单的办法呢?

小南和小女商量了一下,约定不锁门了,而是谁用房间,谁把自己的书包挂在门口,但他们的书包样式都一样,因
此每次进门前得翻翻书包,看课本是谁的,如果是自己的,那么就可以进门,这样省的上锁解锁了。万一书包不是
自己的,那么就在门外等,并通知对方下次用锁门的方式。

后来,小女回老家了,很长一段时间都不会用这个房间。小南每次还是挂书包,翻书包,虽然比锁门省事了,但仍
然觉得麻烦。

于是,小南干脆在门上刻上了自己的名字:【小南专属房间,其它人勿用】,下次来用房间时,只要名字还在,那
么说明没人打扰,还是可以安全地使用房间。如果这期间有其它人要用这个房间,那么由使用者将小南刻的名字擦
掉,升级为挂书包的方式。

同学们都放假回老家了,小南就膨胀了,在 20 个房间刻上了自己的名字,想进哪个进哪个。后来他自己放假回老
家了,这时小女回来了(她也要用这些房间),结果就是得一个个地擦掉小南刻的名字,升级为挂书包的方式。老
王觉得这成本有点高,提出了一种批量重刻名的方法,他让小女不用挂书包了,可以直接在门上刻上自己的名字

后来,刻名的现象越来越频繁,老王受不了了:算了,这些房间都不能刻名了,只能挂书包

synchronized 原理进阶

轻量级锁

轻量级锁的使用场景:如果一个对象虽然有多线程要加锁,但加锁的时间是错开的(也就是没有竞争,如果有竞争会升级为重量级锁),那么可以使用轻量级锁来优化。

轻量级锁对使用者是透明的,即语法仍然是 synchronized

static final Object obj = new Object();
public static void method1() {
 synchronized( obj ) {

 }
}

创建锁记录(Lock Record)对象,每个线程的栈帧都会包含一个锁记录的结构,内部可以存储锁定对象的
Mark Word

在这里插入图片描述

让锁记录中 Object reference 指向锁对象,并尝试用 cas 替换 Object 的 Mark Word,将 Mark Word 的值存
入锁记录

在这里插入图片描述

锁记录替换对象头中的MarkWord

如果 cas 替换成功,对象头中存储了 锁记录地址和状态 00 ,表示由该线程给对象加锁,这时图示如下

在这里插入图片描述

如果 cas 失败,有两种情况

  • 如果是其它线程已经持有了该 Object 的轻量级锁,这时表明有竞争,进入锁膨胀过程
  • 如果是自己执行了 synchronized 锁重入,那么再添加一条 Lock Record 作为重入的计数

在这里插入图片描述

static final Object obj = new Object();
public static void method1() {
 synchronized( obj ) {
 // 同步块 A
 method2();
 }
}
public static void method2() {
 synchronized( obj ) {
 // 同步块 B
 }
}

当退出 synchronized 代码块(解锁时)如果有取值为 null 的锁记录,表示有重入,这时重置锁记录,表示重
入计数减一

在这里插入图片描述

当退出 synchronized 代码块(解锁时)锁记录的值不为 null,这时使用 cas 将 Mark Word 的值恢复给对象头

  • 成功,则解锁成功
  • 失败,说明轻量级锁进行了锁膨胀或已经升级为重量级锁,进入重量级锁解锁流程

锁膨胀

如果在尝试加轻量级锁的过程中,CAS 操作无法成功,这时一种情况就是有其它线程为此对象加上了轻量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁。

static Object obj = new Object();
public static void method1() {
 synchronized( obj ) {
 // 同步块
 }
}

当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁

在这里插入图片描述

这时 Thread-1 加轻量级锁失败,进入锁膨胀流程

  • 即为 Object 对象申请 Monitor 锁,让 Object 指向重量级锁地址
  • 然后自己进入 Monitor 的 EntryList BLOCKED

在这里插入图片描述

当 Thread-0 退出同步块解锁时,使用 cas 将 Mark Word 的值恢复给对象头,失败。这时会进入重量级解锁
流程,即按照 Monitor 地址找到 Monitor 对象,设置 Owner 为 null,唤醒 EntryList 中 BLOCKED 线程

自旋优化

重量级锁竞争的时候,还可以使用自旋(不阻塞,多进行几次循环)来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞(因为阻塞,线程会发生一次上下文切换,极大的浪费性能)。

自旋重试成功的情况

在这里插入图片描述

自旋重试失败的情况

在这里插入图片描述

自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。

在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会
高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。

Java 7 之后不能控制是否开启自旋功能

偏向锁

轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作。

Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现
这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有

static final Object obj = new Object();
public static void m1() {
 synchronized( obj ) {
 // 同步块 A
 m2();
 }
}
public static void m2() {
 synchronized( obj ) {
 // 同步块 B
 m3();
 }
}
public static void m3() {
 synchronized( obj ) {
 // 同步块 C
 }
}

在这里插入图片描述

在这里插入图片描述

偏向状态

偏向锁 使用情况,冲突很少的时候,就一个线程

如果使用场景是多线程,经常竞争,那么偏向锁就不合适了

回忆一下对象头格式

在这里插入图片描述

一个对象创建时:

  • 如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的
    thread、epoch、age 都为 0
  • 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数 -
    XX:BiasedLockingStartupDelay=0 来禁用延迟
class Dog {}

// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0 
public static void main(String[] args) throws IOException {
 Dog d = new Dog();
 ClassLayout classLayout = ClassLayout.parseInstance(d);
 new Thread(() -> {
 log.debug("synchronized 前");
 System.out.println(classLayout.toPrintableSimple(true));
 synchronized (d) {
 log.debug("synchronized 中");
 System.out.println(classLayout.toPrintableSimple(true));
 }
 log.debug("synchronized 后");
 System.out.println(classLayout.toPrintableSimple(true));
 }, "t1").start();
}

输出:

11:08:58.117 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
11:08:58.121 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 
11:08:58.121 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 

可以从输出中看到,主线程切换了,以后对应的dog对象就给主线程用了。

注意:处于偏向锁的对象解锁后,线程 id 仍存储于对象头中

  • 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、
    age 都为 0,第一次用到 hashcode 时才会赋值

在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁

输出:

11:13:10.018 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
11:13:10.021 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 00010100 11110011 10001000 
11:13:10.021 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

可以看到,没有偏向锁了,只有轻量级锁了。(第四行的最后两位00就是轻量锁的标志)

撤销 - 调用对象 hashCode

调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被
撤销,如图所示:

在这里插入图片描述

  • 轻量级锁会在锁记录中记录 hashCode
  • 重量级锁会在 Monitor 中记录 hashCode

在调用 hashCode 后使用偏向锁,记得去掉 -XX:-UseBiasedLocking

输出

11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015 
11:22:10.391 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001 
11:22:10.393 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000 
11:22:10.393 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001

可以看到,调用之后只能走 轻量级锁了。

撤销 - 其它线程使用对象

当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁

Dog d = new Dog();
 Thread t1 = new Thread(() -> {
 synchronized (d) {
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 synchronized (TestBiased.class) {
 TestBiased.class.notify();
 }
 // 如果不用 wait/notify 使用 join 必须打开下面的注释
 // 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的
 /*try {
 System.in.read();
 } catch (IOException e) {
 e.printStackTrace();
 }*/
 }, "t1");
 t1.start();
Thread t2 = new Thread(() -> {
 synchronized (TestBiased.class) {
 try {
 TestBiased.class.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 }, "t2");
 t2.start();
}

输出

[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 
[t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 
[t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000 
[t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
撤销 - 调用 wait/notify

前面学习了 重量级锁,轻量级锁,偏向锁的概念,纵观这三个概念,发现 wait/notify 只有重量锁的概念中涉及了。

Dog d = new Dog();
 Thread t1 = new Thread(() -> {
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 try {
 d.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }, "t1");
 t1.start();
 new Thread(() -> {
 try {
 Thread.sleep(6000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 synchronized (d) {
 log.debug("notify");
 d.notify();
 }
 }, "t2").start();

输出:

[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
[t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101 
[t2] - notify 
[t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010 

可以看到,t1最终以10结尾。

批量重偏向

如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象的 Thread ID

当**撤销偏向锁(对性能也是有一定损耗的)**阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至加锁线程

Vector<Dog> list = new Vector<>();
 Thread t1 = new Thread(() -> {
 for (int i = 0; i < 30; i++) {
 Dog d = new Dog();
 list.add(d);
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }
 synchronized (list) {
 list.notify();
 } 
 }, "t1");
 t1.start();
 
 Thread t2 = new Thread(() -> {
 synchronized (list) {
 try {
 list.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 log.debug("===============> ");
 for (int i = 0; i < 30; i++) {
 Dog d = list.get(i);
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }, "t2");
 t2.start();

输出:

[t1] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - ===============>
[t2] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 0 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 1 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 2 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 3 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 4 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 5 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 6 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 7 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 8 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 9 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 10 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 11 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 12 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 13 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 13 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 14 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 15 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 16 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 17 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 17 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 18 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 

[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101

[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101

因为阈值是20次,以第20次作比较发现,其偏向的线程确实改变了

批量撤销

当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象
都会变为不可偏向的,新建的对象也是不可偏向的

Vector<Dog> list = new Vector<>();
 int loopNumber = 39;
 t1 = new Thread(() -> {
 for (int i = 0; i < loopNumber; i++) {
 Dog d = new Dog();
 list.add(d);
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }
 LockSupport.unpark(t2);
 }, "t1");
 t1.start();
 t2 = new Thread(() -> {
 LockSupport.park();
 log.debug("===============> ");
 for (int i = 0; i < loopNumber; i++) {
 Dog d = list.get(i);
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 LockSupport.unpark(t3);
 }, "t2");
t2.start();
 t3 = new Thread(() -> {
 LockSupport.park();
 log.debug("===============> ");
 for (int i = 0; i < loopNumber; i++) {
 Dog d = list.get(i);
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }, "t3");
 t3.start();
 t3.join();
 log.debug(ClassLayout.parseInstance(new Dog()).toPrintableSimple(true));

首先先执行t1,偏向都是t1

然后执行t2, 前十九次一开始先是偏向,然后变成轻量级锁,最后变为不可偏向(偏向撤销),后二十次又变成了偏向锁t2

然后执行t3,由于 其它线程使用了对象锁,所以偏向状态升级为了轻量级锁,从一开始就是不可偏向的,前19次都是这样的,从第20次开始执行的是撤销操作(相当于总共到了四十次)所以所有的对象都变成了不可偏向的状态

锁消失

public void a() throws Exception {
 x++;
}
 
public void b() throws Exception {
 Object o = new Object();
 synchronized (o) {
 x++;
 }
}

因为有JIT编译器,会对Java字节码做进一步优化

所以当加锁会影响性能的时候,会自动在编译的过程中消除锁


http://www.kler.cn/news/108469.html

相关文章:

  • Less的基本语法
  • 【Mysql】数据库三大范式
  • JAVA 链式编程和建造者模式的使用(lombok的使用)
  • 【教3妹学编程-java实战4】Map遍历删除元素的几种方法
  • etcd的mvcc源码剖析
  • 最新发布!阿里云卓越架构框架重磅升级
  • 漏洞复现--企望制造ERP系统 RCE
  • Webpack 基础以及常用插件使用方法
  • 新增选股结果树形列表,快速加载大牛股来分析——股票量化分析工具QTYX-V2.7.2...
  • mysql 增删改查基础命令
  • SpringMVC Day02 : 请求方式
  • 数组与链表算法-数组与多项式
  • 速卖通商品详情API接口获取aliexpress速卖通商品详情信息、销量、价格、商品规格信息参数调用示例说明
  • vue2 quill 视频上传 ,基于ruoyi vue,oss
  • 『阿里云盘 AList Kodi』家庭影院搭建指南
  • 本机spark 通idea连接Oracle的坑
  • Redis原理-IO模型和持久化
  • LeetCode 2656. K 个元素的最大和【数学】简单
  • 基于springboot实现休闲娱乐代理售票平台系统项目【项目源码+论文说明】
  • 数据库MySQL(五):多表查询
  • 【转信创】银河麒麟:系统安全机制
  • 【LeetCode每日一题合集】2023.10.23-2023.10.29(简单的一周)
  • SparkSQL综合案例-省份维度的销售情况统计分析
  • 【深度学习】Python使用指定gpu运行代码
  • 基于 matplotlib 实现的基本排序算法的动态可视化项目源码,通过 pyaudio 增加音效,冒泡、选择、插入、快速等排序
  • RabbitMQ (4)
  • 机器学习之IV编码,分箱WOE编码
  • 云起无垠典型案例入选《2023软件供应链安全洞察》报告
  • MySQL-DQL【数据查询语言】(图码结合)
  • 首次cmake 多目录构建失败