当前位置: 首页 > article >正文

深度学习YOLO图像视频足球和人体检测 - python opencv 计算机竞赛

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
  • 4 Yolov5算法
  • 5 数据集
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习YOLO图像视频足球和人体检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

得益于深度学习技术的飞速发展,基于深度学习的目标检测算法研究成为近几年研究的热门方向。
本项目基于Yolov5算法实现图像视频足球和人检测。

2 实现效果

在这里插入图片描述
在这里插入图片描述

3 卷积神经网络

卷积神经网络(CNN)是一种包含卷积运算的深层前馈神经网络。传统的神经网络每个神经元权重连接上层的所有神经元,所以会出现大量权重值,增加整个网络的数据量和复杂程度。CNN则具有两个重要特征则是“局部感知”和“权值共享”,可有效提取数据的特征同时降低权值数量。完整的卷积网络通常包括卷积层、池化层、全连接层和输出层。
卷积神经网络的运行流程就是在卷积层进行特征提取,池化层进行进一步特征概括,最终通过全连接层进行分类的过程,流程见下图。根据数据的特征不同,卷积网络需要构建不同深度的网络结构,越复杂的数据越需要丰富的网络堆叠方式来提取数据的多层特征。

在这里插入图片描述

卷积层的提取数据特征的作用方式是通过卷积运算,使相同的卷积核根据固定的步长遍历数据。卷积核每遍历一个位置就和前一层中的神经元执行卷积运算,它是将矩阵中相同位置的元素直接相乘,然后求和的过程。在一维卷积神经网络中按照这个运算逻辑将卷积核矩阵根据步幅值继续向右滑动,直到覆盖整个输入矩阵,如图。

在这里插入图片描述

最后,得到卷积后的特征矩阵。在卷积层,输入由一组卷积核卷积得到新的特征映射经过激活函数处理传递至下一层。

池化层实现的功能则是对输入数据的降维和抽象,通过在空间范围内做维度约减,使模型可以抽取更广范围的特征,同时减少计算量和参数个数。池化采样主要分为两种方法:平均池化采样和最大池化采样。本文采用的是最大池化。池化过程如图。

https://img-blog.csdnimg.cn/228a5a0c5fbe4b56b54f06d5f66bb531.jpeg

最终卷积层和池化层提取的所有特征,在全连接层中以非线性地拟合输入数据用于分类。

4 Yolov5算法

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
相关代码

class Yolo(object):
    def __init__(self, weights_file, verbose=True):
        self.verbose = verbose
        # detection params
        self.S = 7  # cell size
        self.B = 2  # boxes_per_cell
        self.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle",
                        "bus", "car", "cat", "chair", "cow", "diningtable",
                        "dog", "horse", "motorbike", "person", "pottedplant",
                        "sheep", "sofa", "train","tvmonitor"]
        self.C = len(self.classes) # number of classes
        # offset for box center (top left point of each cell)
        self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),
                                              [self.B, self.S, self.S]), [1, 2, 0])
        self.y_offset = np.transpose(self.x_offset, [1, 0, 2])

        self.threshold = 0.2  # confidence scores threhold
        self.iou_threshold = 0.4
        #  the maximum number of boxes to be selected by non max suppression
        self.max_output_size = 10

        self.sess = tf.Session()
        self._build_net()
        self._build_detector()
        self._load_weights(weights_file)

5 数据集

数据集包含4000多张标注过的球员与足球
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


http://www.kler.cn/a/132952.html

相关文章:

  • 基于视觉智能的时间序列基础模型
  • 从零开始学习 sg200x 多核开发之 uboot saveenv 功能使能
  • 软件测试 —— 自动化基础
  • 【机器学习导引】ch6-支持向量机
  • 大数据实验9:Spark安装和编程实践
  • Python酷库之旅-第三方库Pandas(218)
  • Django+vue前后端分离实战--vue后台管理系统--vue环境安装项目创建
  • Kotlin语言实现单击任意TextVIew切换一个新页面,并且实现颜色变换
  • 计算Qt中的QAudioOutput缓冲区未播放的音频字节数对应时长
  • centos 6.10 安装 perl 5.14
  • 设计测试用例的6种基本原则
  • MATLAB基础应用精讲-【数模应用】神经网络
  • Kafka、RocketMQ、RabbitMQ的比较总结Kafka、RocketMQ、RabbitMQ的比较总结
  • 一起Talk Android吧(第五百五十三回:解析Retrofit返回的数据)
  • 浅尝:iOS的CoreGraphics和Flutter的Canvas
  • HarmonyOS开发Java与ArkTS如何抉择
  • 【数据预处理2】数据预处理——数据标准化
  • C# using语句使用介绍
  • 【音视频基础】AVI文件格式
  • 反转链表,剑指offer,力扣
  • 无线WiFi安全渗透与攻防(六)之WEP破解-Gerix-wifi-cracker自动化破解WEP加密
  • 组合模式 rust和java的实现
  • 【机器学习9】前馈神经网络
  • 利用 Pandoc + ChatGPT 优雅地润色论文,并保持 Word 公式格式:Pandoc将Word和LaTeX文件互相转化
  • 开源情报 (OSINT)
  • 2023年中职“网络安全“—Web 渗透测试②