当前位置: 首页 > article >正文

PCL内置点云类型

PCL内置了许多点云类型供我们使用,下面先介绍PLC内置的点云数据类型

PCL中的点云类型为PointT;至于为什么是PointT类型需要追随到原来的ros开发中去,因为PCL库也是从原来的ROS中剥离出来的;大家都一致的认为点云结构是离散的N维信息描述的物体。因此最简单的点云结构便是XYZ,下面首先来看看XYZ三维信息如何在PCL中实现的。

1 PointXYZ

最简单的XYZ点云结构体,包含X,Y,Z信息和一个padding;此处额外增加一个padding是为了满足支持SSE指令集的处理器,并实现SIMD向量化加速而额外添加的一个信息,该信息无实际意义;如果你觉得这里使用浪费了内存资源,你可以去掉最后一个padding维度并使用简单的XYZ来代表一个点云数据。

struct PointXYZ
{
  float x;
  float y;
  float z;
  float padding;
};

如下是之前已经演示过的一个简答示例:

该示例创建了一个PointXYZ类型的点云数据,并向其中随机添加了1000个点云信息。

其中

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/common/common.h>


int main(int argc, char **argv) {
    pcl::PointCloud<pcl::PointXYZ> cloud;

    // Fill in the cloud data
    /* pcl中的点云分为有序点云与无序点云:
     * 1、有序点云类使用深度相机生成的点云数据,该点云数据有指定的宽高,
     * 有序点云数据的可以轻松的获取相邻点的信息,这可以极大的提升某些点云算法的运算效率
     *
     * 2、无序点云就是常规的点云数据,无序点云的height始终为1,width为点云的个数
     *
     */

    //可以自行切换下面的注释,看看有什么区别
//    cloud.width = 640; // Image-like organized structure, with 480 rows and 640 columns,
//    cloud.height = 480; // thus 640*480=307200 points total in the dataset

    cloud.width = 640*480; // unorganized point cloud dataset with 307200 points
    cloud.height = 1;


    //is_dense 指定points中的信息数据是否全部是有效数值的,是则为true;
    // 当数据集中包含有Inf/NaN等无效值时,此时为false。
    cloud.is_dense = false;
    cloud.points.resize(cloud.width * cloud.height);


    for (auto &point: cloud) {
        point.x = 1024 * rand() / (RAND_MAX + 1.0f);
        point.y = 1024 * rand() / (RAND_MAX + 1.0f);
        point.z = 1024 * rand() / (RAND_MAX + 1.0f);
    }

    for (auto &point: cloud) {
        std::cout << point.x << point.y << point.z << std::endl;
    }



    pcl::io::savePCDFileASCII("test_pcd.pcd", cloud);
    std::cerr << "Saved " << cloud.size() << " data points to test_pcd.pcd." << std::endl;

    for (const auto &point: cloud)
        std::cerr << "    " << point.x << " " << point.y << " " << point.z << std::endl;

    //判断点云是否为有序点云
    if (!cloud.isOrganized ())
    {
        std::cout<<"该点云为无序点云"<<std::endl;
    }
    return (0);
}

2 PointXYZI

PointXYZI包含点云的坐标XYZ和该点的强度(intensity)信息,大家可能会觉得多了一个强度信息就可以使用强度信息替换掉PointXYZ中被无效占用的padding;但是实际上他的存储是这样的:

union
{
  float data[4];
  struct
  {
    float x;
    float y;
    float z;
  };
};
union
{
  struct
  {
    float intensity;
  };
  float data_c[4];
};

点云还是占用了4个float空间,一个强度信息也占用了4个float空间;这样的原因如下:

1 大多数的SE3变换中最后一行的元素都是0或者1,如果此时将强度信息与点xyz整合在一块内存区域,那么这其中的点乘操作会使得第四个维度的强度信息无意义;因此不如分开存放并进行内存对齐,有利于SSE的SIMD运算

3 PointXYZRGBA

PointXYZRGBA点云类型包含了xyz与std::uint32_t rgba类型的颜色信息

注:此处的嵌套union结构为历史原因导致,应该在新的代码中舍弃

union
{
  float data[4];
  struct
  {
    float x;
    float y;
    float z;
  };
};
union
{
  union
  {
    struct
    {
      std::uint8_t b;
      std::uint8_t g;
      std::uint8_t r;
      std::uint8_t a;
    };
    float rgb;
  };
  std::uint32_t rgba;
};

4 PointNormal

点云中另外一种常见的数据类型是PointNormal,其中normal代表该点的法向量信息,与前面的PointXYZI一样,此处为了计算效率也使用了额外的数据进行对齐

union
{
  float data_n[4];
  float normal[3];
  struct
  {
    float normal_x;
    float normal_y;
    float normal_z;
  };
}
union
{
  struct
  {
    float curvature;
  };
  float data_c[4];
};

5 衍生类型

其他的类型还包括如下几个:

PointWithRange - float x, y, z (union with float point[4]), range;点和距离信息,常见于RGBD图像

PointXYZRGBNormal - float x, y, z, normal[3], curvature; std::uint32_t rgba;点与颜色和法线信息

PointXYZINormal - float x, y, z, intensity, normal[3], curvature;点强度与法线信息

PointWithScale - float x, y, z, scale;点与尺度信息,可以进行缩放操作

PointWithViewpoint - float x, y, z, vp_x, vp_y, vp_z;点与视场角信息

PointXY - float x,y;简单的二维结构,仅保存关键点信息


http://www.kler.cn/a/133337.html

相关文章:

  • linux病毒编写+vim shell编程
  • 接口文档的定义
  • SkyWalking-安装
  • Flutter 小技巧之 OverlayPortal 实现自限性和可共享的页面图层
  • 学习日志010--python异常处理机制与简单文件操作
  • LaTeX之四:如何兼容中文(上手中文简历和中文论文)、在win/mac上安装新字体。
  • Vue中给对象添加新属性时,界面不刷新怎么办?
  • PS学习笔记——移动工具
  • 【LeetCode刷题日志】225.用队列实现栈
  • 宗老师计算机教学-大型集群开发基础知识
  • 软件需求调研指南
  • 汽车CAN/ CAN FD数据记录仪在上汽大通诊断测试部门的应用
  • PyTorch微调权威指南3:使用数据增强
  • 【论文阅读】基于隐蔽带宽的汽车控制网络鲁棒认证(一)
  • 【0235】修改私有内存(private memory)中的MyBEEntry时,st_changecount值前后变化
  • 「Java开发指南」如何在Spring中使用JAX-WS注释器?
  • 【JavaEE】Servlet API 详解(HttpServletResponse类方法演示、实现自动刷新、实现自动重定向)
  • 服务器数据恢复—服务器raid5离线磁盘上线同步失败的数据恢复案例
  • C#装箱与拆箱详解
  • 实验三 页面置换算法
  • 数据结构【DS】树和森林的遍历对应关系
  • Linux(4):Linux文件与目录管理
  • 个人微信机器人接口
  • .Net Web项目创建比较不错的参考文章
  • 汇丰银行:在数字化银行的探索与实践
  • 数智竞技何以成为“科技+体育”新样本?