当前位置: 首页 > article >正文

Redis:新的3种数据类型Bitmaps、HyperLoglog、Geographic

目录

  • Bitmaps
    • 简介
    • 常用命令
    • bitmaps与set比较
  • HyperLoglog
    • 简介
    • 命令
  • Geographic
    • 简介
    • 命令

Bitmaps

简介

位操作字符串。

现代计算机使用二进制(位)作为信息的基本单位,1个字节等于8位,例如“abc”字符串是有3个字节组成,但实际在计算机内存储时将其使用二进制表示,“abc”分别对应的ASCII码是:97、98、99,对应的二进制分别是01100001、01100010、01100011,如下图
在这里插入图片描述

合理地使用位操作能够有效地提高内存使用率和开发效率。

Redis提供了Bitmaps这个“数据类型”可以实现对位的操作:

  • Bitmaps本身不是一种数据类型, 实际上它就是字符串(key-value) , 但是它可以对字符串的位进行操作,字符串中每个字符对应1个字节,也就是8位,一个字符可以存储8个bit位信息。
  • Bitmaps单独提供了一套命令, 所以在Redis中使用Bitmaps和使用字符串的方法不太相同。 可以把Bitmaps想象成一个以位为单位的数组, 数组的每个单元只能存储0和1, 数组的下标在Bitmaps中叫做偏移量。

在这里插入图片描述

常用命令

  1. setbit

设置某个偏移量的值(0或1)。

SETBIT key offset value

设置offset偏移位的值为value,offset的值是从0开始的,n代表第n+1个bit位置的。
offset 参数必须大于或等于 0 ,小于 2^32 (bit 映射被限制在 512 MB 之内)。
value 的值只能为0或1

**返回值:**指定偏移量原来储存的位。

示例:

redis> SETBIT bit 10086 1 
(integer) 0 
redis> GETBIT bit 10086 
(integer) 1 
redis> GETBIT bit 100 # bit 默认被初始化为 0 
(integer) 0

例如每个独立用户是否访问过网站存放在bitmaps中,将访问的用户记做1,没有访问的用户记做0,用户id作为offset。

假设现在有20个用户,userid=1,6,11,15,19的用户对网站进行了访问,那么当前bitmaps初始化结果如图
在这里插入图片描述

users:20220409 这个bitmaps中表示2022-04-09这天独立访问的用户,如下

127.0.0.1:6379> setbit users:20220409 1 1 
(integer) 0 
127.0.0.1:6379> setbit users:20220409 6 1 
(integer) 0 
127.0.0.1:6379> setbit users:20220409 11 1 
(integer) 0 
127.0.0.1:6379> setbit users:20220409 15 1 
(integer) 0 
127.0.0.1:6379> setbit users:20220409 19 1 
(integer) 0
  1. getbit

获取某个偏移位的值.

GETBIT key offset

获取key所对应的bitmaps中offset偏移位的值。

返回值:0或者1

示例

127.0.0.1:6379> setbit users 1001 1 #设置偏移量1001的bit位的值为1 
(integer) 0 
127.0.0.1:6379> getbit users 1001 #获取偏移位1001的bit位的值 
(integer) 1 
127.0.0.1:6379> getbit users 1000 #获取偏移位1000的bit位的值,未设置,返回0 
(integer) 0
  1. bitcount

统计bit位都为1的数量

BITCOUNT key [start] [end]

统计字符串被设置为1的bit数,一般情况下,给定的整个字符串都会被进行统计,通过指定额外的

start或者end参数,可以让计数只在特定的位上进行, start 和 end 参数,都可以使用负数值:

比如 -1 表示最后一个位,而 -2 表示倒数第二个位,以此类推。

注意了:start、end是指bit组的字节的下标数,一个直接对应8个bit,所以[a,b]对应的offset范围是[8a,8b+7]

示例:

127.0.0.1:6379> setbit user 7 1 # 设置user这个bitmaps中偏移量为7的bit为值为1,也就是第8 个bit位的值 
(integer) 0 
127.0.0.1:6379> setbit user 15 1 # 设置user这个bitmaps中偏移量为15的bit为值为1 
(integer) 0 
127.0.0.1:6379> setbit user 23 1 # 设置user这个bitmaps中偏移量为23的bit为值为1 
(integer) 0 
127.0.0.1:6379> bitcount user # 获取user这个bitmaps中1的数量 
(integer) 3 
127.0.0.1:6379> bitcount user 0 1 # 获取[0,1]这个字节内bit位上1的数量,也就是offset是 [0,15]的位置上1的数量,所以是2个 
(integer) 2 
127.0.0.1:6379> bitcount user 0 0 # 获取[0,0]这个字节内bit位上1的数量,也就是offset是 [0,7]的位置上1的数量,只有7这个位置,所以是1个 
(integer) 1
  1. bittop

对一个多个bitmaps执行位操作。

BITOP operation destkey key [key ...]

对一个或多个保存二进制位的字符串 key 进行位元操作,并将结果保存到 destkey 上。

operation 可以是 AND 、 OR 、 NOT 、 XOR 这四种操作中的任意一种:

  • BITOP AND destkey key [key ...] ,对一个或多个 key 求逻辑并,并将结果保存到destkey 。
  • BITOP OR destkey key [key ...] ,对一个或多个 key 求逻辑或,并将结果保存到destkey 。
  • BITOP XOR destkey key [key ...] ,对一个或多个 key 求逻辑异或,并将结果保存到destkey 。
  • BITOP NOT destkey key ,对给定 key 求逻辑非,并将结果保存到 destkey 。

除了 NOT 操作之外,其他操作都可以接受一个或多个 key 作为输入。

**返回值:**保存到 destkey 的字符串的长度,和输入 key 中最长的字符串长度相等。

示例

redis> SETBIT bits-1 0 1 # bits-1 = 1001 
(integer) 0 
redis> SETBIT bits-1 3 1 
(integer) 0 
redis> SETBIT bits-2 0 1 # bits-2 = 1011 
(integer) 0 
redis> SETBIT bits-2 1 1 
(integer) 0 
redis> SETBIT bits-2 3 1 
(integer) 0 
redis> BITOP AND and-result bits-1 bits-2 
(integer) 1
redis> GETBIT and-result 0      # and-result = 1001
(integer) 1
redis> GETBIT and-result 1 
(integer) 0 
redis> GETBIT and-result 2 
(integer) 0 
redis> GETBIT and-result 3 
(integer) 1

bitmaps与set比较

假设网站有 1 亿用户, 每天独立访问的用户有 5 千万, 如果每天用集合类型和 Bitmaps 分别存储活跃用户可以得到表

set 和 Bitmaps 存储一天活跃用户对比

在这里插入图片描述

很明显, 这种情况下使用 Bitmaps 能节省很多的内存空间, 尤其是随着时间推移节省的内存还是非常可观的。

set Bitmaps 存储独立用户空间对比

在这里插入图片描述

但 Bitmaps 并不是万金油, 假如该网站每天的独立访问用户很少, 例如只有 10 万(大量的僵尸用户), 那么两者的对比如下表所示, 很显然, 这时候使用 Bitmaps 就不太合适了, 因为基本上大部分位都是 0。

在这里插入图片描述

HyperLoglog

简介

在工作当中,我们经常会遇到与统计相关的功能需求,比如统计网站 PV(PageView 页面访问量),可以使用 Redis 的 incr、incrby 轻松实现。但像 UV(UniqueVisitor 独立访客)、独立 IP 数、搜索记录数等需要去重和计数的问题如何解决?这种求集合中不重复元素个数的问题称为基数问题。

解决基数问题有很多种方案:

数据存储在 MySQL 表中,使用 distinct count 计算不重复个数。

使用 Redis 提供的 hash、set、bitmaps 等数据结构来处理。

以上的方案结果精确,但随着数据不断增加,导致占用空间越来越大,对于非常大的数据集是不切实际的。能否能够降低一定的精度来平衡存储空间?Redis 推出了 HyperLogLog。

Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是:在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。

在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。

但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以HyperLogLog 不能像集合那样,返回输入的各个元素。

什么是基数?

比如数据集 {1, 3, 5, 7, 5, 7, 8},那么这个数据集的基数集为 {1, 3, 5 ,7, 8},基数 (不重复元素) 为 5。 基数估计就是在误差可接受的范围内,快速计算基数。

命令

  1. pfadd

添加多个元素。

pfadd key element [element ...]

向HyperLoglog类型的key中添加一个或者多个元素。添加一个或者多个元素到key对应的集合中。

**返回值:**1:添加成功;0:添加失败

示例

127.0.0.1:6379> pfadd program java php c c++ # program中添加4个元素 [java,php,c,c++],添加成功发,返回1 
(integer) 1 
127.0.0.1:6379> pfadd program java # 再次添加java,由于已经存在,所以添加失败,返回0 
(integer) 0 
127.0.0.1:6379> pfadd program java js # 再次添加2个元素,java已经存在了,但是js不存在, 添加成功,返回1 
(integer) 1
  1. pfcount

获取多个HLL合并后元素的个数。

pfcount key1 key2 ...

统计一个或者多个key去重后元素的数量。

示例

127.0.0.1:6379> pfadd uv1 a b c d e #uv1中5个元素:[a,b,c,d,e] 
(integer) 1 
127.0.0.1:6379> pfcount uv1 #uv1中数量为5 
(integer) 5 
127.0.0.1:6379> pfadd uv2 b c d e f #uv2中5个元素:[b,c,d,e,f] 
(integer) 1 
127.0.0.1:6379> pfcount uv2 #uv2中数量为5
(integer) 5 
127.0.0.1:6379> pfcount uv1 uv2 # 获取uv1和uv2去重之后数量合集:[a,b,c,d,e,f],数量为5 
(integer) 5
  1. pfmerge

将多个HLL合并后元素放入另外一个HLL

pfmerge destkey sourcekey [sourcekey ...]

将多个 sourcekey 合并后放到 destkey 中。

示例

127.0.0.1:6379> pfadd uv1 a b c d e #uv1中5个元素:[a,b,c,d,e] 
(integer) 1 
127.0.0.1:6379> pfcount uv1 #uv1中数量为5 
(integer) 5 
127.0.0.1:6379> pfadd uv2 b c d e f #uv2中5个元素:[b,c,d,e,f] 
(integer) 1 
127.0.0.1:6379> pfcount uv2 #uv2中数量为5 
(integer) 5 
127.0.0.1:6379> pfmerge uv_dest uv1 uv2 #将uv1和uv2合并后放入uv_dest 
OK
127.0.0.1:6379> pfcount uv_dest #uv_dest元素个数为6 
(integer) 6

Geographic

简介

Reids3.2 中增加了对GEO类型的支持,GEO(Geographic),地理信息的缩写。该类型,就是元素的 2 维坐标,在地图上就是经纬度,redis基于该类型,提供了经纬度设置、查询、范围查询、距离查询,经纬度Hash等常见操作。

命令

  1. geoadd

添加多个位置的经纬度。

geoadd key longitude latitude member [longitude latitude member ...]

longitude latitude member:经度 纬度 名称

示例

127.0.0.1:6379> geoadd china:city 121.47 31.23 shanghai #添加上海的经纬度 
(integer) 1 
127.0.0.1:6379> geoadd china:city 106.50 29.53 chongqing 114.05 22.52 shenzhen 116.38 39.90 beijing #添加重庆、深圳、北京 3 个城市的经纬度 
(integer) 3 
127.0.0.1:6379> type china:city #发现geo实际上使用zset类型存储的 
zset 
127.0.0.1:6379> zrange china:city 0 -1 
1) "chongqing" 2) "shenzhen" 3) "shanghai" 4) "beijing" 
127.0.0.1:6379> zrange china:city 0 -1 withscores 
1) "chongqing" 2) "4026042091628984" 3) "shenzhen" 4) "4046432193584628" 5) "shanghai" 6) "4054803462927619" 7) "beijing" 8) "4069885332386336"

两级无法直接添加,一般会下载城市数据,直接通过java程序一次性导入。

有效的经纬度从-180度到180度,有效的维度从-85.05112878度到85.05112878度。

当坐标位置超出指定范围时,该命令将会返回一个错误。

已经添加的数据,是无法再次往里面添加的。

  1. geopos

获取多个位置的坐标值

geopos key member [member ...]

示例

127.0.0.1:6379> geoadd china:city 121.47 31.23 shanghai #添加上海的经纬度 
(integer) 1 
127.0.0.1:6379> geoadd china:city 106.50 29.53 chongqing 114.05 22.52 shenzhen 116.38 39.90 beijing #添加重庆、深圳、北京 3 个城市的经纬度 
(integer) 3 
127.0.0.1:6379> geopos china:city wuhan beijing chongqing #获取武汉、北京、重庆 3个城 市的坐标,由于没有添加武汉的数据,所以没有获取到,其他2个获取到了 
1) (nil) 
2) 
	1) "116.38000041246414185" 
	2) "39.90000009167092543"
3) 
  1) "106.49999767541885376" 
  2) "29.52999957900659211"
  1. geodist

获取两个位置的直线距离

geodist key member1 member2 [m|km|ft|mi]

单位:[m|km|ft|mi] -》[米|千米|英里|英尺],默认为米

示例

127.0.0.1:6379> geoadd china:city 
121.47 31.23 shanghai #添加上海的经纬度 
(integer) 1 
127.0.0.1:6379> geoadd china:city 106.50 29.53 chongqing 114.05 22.52 shenzhen 116.38 39.90 beijing #添加重庆、深圳、北京 3 个城市的经纬度 
(integer) 3
127.0.0.1:6379> geodist china:city beijing chongqing km #获取北京到重庆的直线距离 
"1462.9505"
  1. georadius

以给定的经纬度为中心,找出某一半径内的元素

georadius key longitude latitude radius m|km|ft|mi

单位:[m|km|ft|mi] -》[米|千米|英里|英尺],默认为米

示例

127.0.0.1:6379> geoadd china:city 121.47 31.23 shanghai #添加上海的经纬度 
(integer) 1 
127.0.0.1:6379> geoadd china:city 106.50 29.53 chongqing 114.05 22.52 shenzhen 116.38 39.90 beijing #添加重庆、深圳、北京 3 个城市的经纬度
(integer) 3 
127.0.0.1:6379> georadius china:city 110 30 1000 km #在china:city中检索:以经纬度 (110,30)为中心,半径为1000km内的位置列表 
1) "chongqing" 
2) "shenzhen"

http://www.kler.cn/a/133822.html

相关文章:

  • Java 多线程(三)—— 死锁
  • HTTP常见的请求头有哪些?都有什么作用?在 Web 应用中使用这些请求头?
  • 大模型时代,呼叫中心部门如何自建一套大模型在线客服?
  • 【Linux】-学习笔记03
  • 【R78/G15 开发板测评】串口打印 DHT11 温湿度传感器、DS18B20 温度传感器数据,LabVIEW 上位机绘制演化曲线
  • Linux 函数在多个地方被同时调用时,函数中的变量如何管理,确保互不影响
  • SELinux零知识学习十七、SELinux策略语言之类型强制(2)
  • 日志维护库:loguru
  • 图论| 827. 最大人工岛 127. 单词接龙
  • 运行ps显示msvcp140.dll丢失怎么恢复?msvcp140.dll快速解决的4个不同方法
  • react antd下拉选择框选项内容换行
  • js:react使用zustand实现状态管理
  • Shaderlab的组成部分SubShader
  • 分类预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多特征分类预测
  • C#中.NET 6.0 控制台应用通过EF访问新建数据库
  • 夺走的第一份工作竟是OpenAI CEO?
  • Linux文件和文件夹命令详解
  • MIB 6.1810实验Xv6 and Unix utilities(2)sleep
  • 九、Linux用户管理
  • Windows安装多个版本的Java
  • vue.js javascript js判断是值否为空
  • 庖丁解牛:NIO核心概念与机制详解 03 _ 缓冲区分配、包装和分片
  • 八股文-TCP的三次握手
  • C++-特殊类和单例模式
  • Leetcode—142.环形链表II【中等】
  • 基于springboot实现智能热度分析和自媒体推送平台系统项目【项目源码】