当前位置: 首页 > article >正文

Python实现WOA智能鲸鱼优化算法优化随机森林回归模型(RandomForestRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。

本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化随机森林回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

   

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建WOA智能鲸鱼优化算法优化随机森林回归模型

主要使用WOA智能鲸鱼优化算法优化随机森林回归算法,用于目标回归。

6.1 WOA智能鲸鱼优化算法寻找的最优参数   

最优参数:

   

6.2 最优参数值构建模型

编号

模型名称

参数

1

随机森林回归模型

max_depth=best_max_depth

2

n_estimators=best_n_estimators

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

随机森林回归模型

  R方

0.8779

均方误差

2066.0262

可解释方差值

0.8779

平均绝对误差

35.6812

从上表可以看出,R方0.8779,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。    

8.结论与展望

综上所述,本文采用了WOA智能鲸鱼优化算法寻找随机森林回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/1mZ6q-BXjltgQxUU1iS-NKA 
提取码:n1hc


更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客



http://www.kler.cn/a/135322.html

相关文章:

  • 操作系统lab4-页面置换算法的模拟
  • 设计模式之工厂模式,但是宝可梦
  • 基于springboot的汽车租赁管理系统的设计与实现
  • Jetpack 之 Ink API初探
  • 论文解析:边缘计算网络中资源共享的分布式协议(2区)
  • 什么岗位需要学习 OpenGL ES ?说说 3.X 的新特性
  • Django 入门学习总结4
  • 如何利用Python开发自动发布文章脚本?记录开发万媒易发的心路历程
  • 计算一个6人的队形问题
  • 多位数组转化为一维数组
  • Kotlin 核心语法,为什么选择Kotlin ?
  • Centos(Linux)服务器安装Dotnet8 及 常见问题解决
  • 世微 电动车摩托车灯 5-80V 1.2A 一切二降压恒流驱动器AP2915
  • 深入了解百度爬虫工作原理
  • rook-ceph部署
  • GitHub 2023报告-开源和AI的现状
  • 172版本关闭背钻后自动添加反盘和禁布的功能
  • 读取Json BugFix
  • DevExpress中文教程 - 如何在macOS和Linux (CTP)上创建、修改报表(上)
  • 一周互联网简讯 | 本周互联网发生了啥?(第3期)
  • KeyarchOS的CentOS迁移实践:使用操作系统迁移工具X2Keyarch V2.0
  • 驾驶证科一视频(整理)
  • Linux awk命令
  • 矩阵运算_矩阵的协方差矩阵/两个矩阵的协方差矩阵_求解详细步骤示例
  • docker-compose部署mysql5.7主从
  • 广州一母婴店因设置0元购导致关店