当前位置: 首页 > article >正文

【左程云算法全讲11】贪心算法 并查集

系列综述:
💞目的:本系列是个人整理为了秋招面试的,整理期间苛求每个知识点,平衡理解简易度与深入程度。
🥰来源:材料主要源于左程云算法课程进行的,每个知识点的修正和深入主要参考各平台大佬的文章,其中也可能含有少量的个人实验自证。
🤭结语:如果有帮到你的地方,就点个赞关注一下呗,谢谢🎈🎄🌷!!!
🌈【C++】秋招&实习面经汇总篇


文章目录

      • 贪心算法
      • 并查集
    • 参考博客


😊点此到文末惊喜↩︎

贪心算法

  1. 需要整理堆的使用,重写cmp
auto cmp = [&](const int& a, const int &b) {
    return cnt[a] < cnt[b];//此处cnt可由上文完成定义(最大堆--跟sort正好相反)
};
priority_queue<int, vector<int>, decltype(cmp)>pq{cmp};
  1. 分解过程
    • 分解业务
    • 根据业务逻辑找到不同的贪心策略
    • 可以举出反例的贪心策略直接跳过,不能举出反例的要证明其有效性
  2. 贪心算法的解题套路
    • 实现一个不依靠贪心策略的解法X,可以用最暴力的尝试
    • 脑补出贪心策略A、贪心策略B、贪心策略C…
    • 用解法X和对数器,用实验的方式得知哪个贪心策略正确
    • 不要去纠结贪心策略的证明
  3. 贪心策略:通常使用堆和排序
  4. 示例:排序式贪心
    • 题目:
      • 一些项目要占用一一个会议室宣讲,会议室不能同时容纳两个项目的宣讲。
      • 给你每- -个项目开始的时间和结束的时间
      • 你来安排宣讲的日程,要求会议室进行的宣讲的场次最多。
      • 返回最多的宣讲场次。
    • 贪心思路:每次优先安排结束时间最早的,并且将无法安排的进行删除
  5. 示例:堆式贪心1
    • 题目:
      • 一块金条切成两部分,需要花费和原长度一样的铜板数量
      • 比如长度为20的金条,不管怎么切,都要花费20个铜板。
      • 一群人各自分到自己想要的金条部分(和为总长度),怎么分最省铜板?
    • 思路1:每次尽可能的切下最大的部分
    • 思路2:使用哈夫曼树,每次弹出最小的两个数合并后在压入
      在这里插入图片描述
  6. 示例:堆式贪心2
    • 题目:
      • 输入:正数数组costs、正数数组profits、 正数K、正数M。costs[]表示i号项目的花费,profits[]表示i号项目在扣除花费之后还能挣到的钱(利润)
      • K表示你只能串行的最多做k个项目,M表示你初始的资金
      • 说明:每做完一个项目,马上获得的收益,可以支持你去做下一个项目。不能并行的做项目。
      • 输出:你最后获得的最大钱数。
    • 思路1:建立两个堆,一个以costs作为key的小根堆,一个是以profits作为key的大根堆。
    struct Program {
    	int p;
    	int c
    	Program(int profit, int cost) : p(profit), c(cost){}
    }
    
    int FindMaxProfits(vector<int> profits, vector<int> costs, int times, int surplus) {
    	// 比较最小花费
    	auto cmp_min_cost = [](const Program &a, const Program &b)->bool{
    		return a.c < b.c;
    	};
    	// 比较最大利润
    	auto cmp_max_profit = [](const Program &a, const Program &b)->bool{
    		return a.p > b.p;
    	};
    	// 关于花费的小根堆
    	priority_queue<Program , vector<Program>, decltype(cmp_min_cost)> min_cost_pq;
    	// 关于利润的大根堆
    	priority_queue<Program , vector<Program>, decltype(cmp_max_profit)> max_profit_pq;
    	// 将所有花费压入优先队列中
    	for (int i = 0; i < profits.size(); ++i) {
    		Program pg = {profits[i], costs[i]};
    		min_cost_pq.push(pg);
    	}	
    	// 每次循环取出所有可支持的项目,并压入最大利润队列
    	for (int i = 0; i < times; ++i) {
    		while (!min_cost_pq.empty() && min_cost_pq.top().c <= surplus){
    			Program pg = min_cost_pq.top();
    			min_cost_pq.pop();
    			max_profit_pq.push(pg);
    		}
    		// 如果最大利润队列为空,说明没有符合的项目可以继续进行
    		if (max_profit_pq.empty()) {
    			return surplus;
    		}
    		// 获取最大利润
    		surplus += max_profit_pq.top().p;
    		max_profit_pq.pop();
    	}	
    
    }
    

并查集

  1. 基本操作
    • 并:合并两个子集为一个新的集合
    • 查:通过查找一个结点的根节点,从而查找元素所属子集
  2. 作用:快速确定集合中的两两元素是否属于S的同一子集
  3. 基本并查集
    • 问题:每一次Find操作的时间复杂度为O(H),H为树的高度,由于树的不断合并可能会使树严重不平衡,最坏情况每个节点都只有一个子节点,如下图3(第一个点为根节点)在这里插入图片描述
    #include <vector>
    class DisjSet {
    private:
    	vector<int> parent; 
    public:
    	DisjSet(int max_size) : parent(vector<int>(max_size)) {
    		// 各自为营:初始化每一个元素的根节点都为自身
    		for(int i = 0; i < max_size; i++) 
    			parent[i] = i; 
    	}
    	// 查找:没找到就一直递归查看父亲结点
    	int find(int x) {
    		return (parent[i] == x ? x : find(parent[i]);
    	}
    	// 合并:将 x1 所在的集合的根节点的父节点设置为 x2 所在集合的根节点
    	void to_union(int x1, int x2) {
            parent[find(x1)] = find(x2);
        }
    	// 判断两个元素是否属于同一个集合
        bool is_same(int e1, int e2) {
            return find(e1) == find(e2);
        }
    };
    
    
  4. 优化并查集
    • 路径压缩:查询过程中,将沿途每个结点的父结点都设置为根结点,下次就可以减少查询路径长度
    • 按秩合并:“按秩合并”。实际上就是在合并两棵树时,将高度较小的树合并到高度较大的树上。这里我们使用“秩”(rank)代替高度,秩表示高度的上界,通常情况我们令只有一个节点的树的秩为0,严格来说,rank + 1才是高度的上界;两棵秩分别为r1、r2的树合并,如果秩不相等,我们将秩小的树合并到秩大的树上,这样就能保证新树秩不大于原来的任意一棵树。如果r1与r2相等,两棵树任意合并,并令新树的秩为r1 + 1。
    #include <vector>
    class DisjSet {
      private:
        std::vector<int> parent;
        std::vector<int> rank; // 秩
      public:
        DisjSet(int max_size) : parent(std::vector<int>(max_size)),
                                rank(std::vector<int>(max_size, 0)) {
            for (int i = 0; i < max_size; ++i)
                parent[i] = i;
        }
        int find(int x) {
            return x == parent[x] ? x : (parent[x] = find(parent[x]));
        }
        void to_union(int x1, int x2) {
            int f1 = find(x1);
            int f2 = find(x2);
            if (rank[f1] > rank[f2])
                parent[f2] = f1;
            else {
                parent[f1] = f2;
                if (rank[f1] == rank[f2])
                    ++rank[f2];
            }
        }
        bool is_same(int e1, int e2) {
            return find(e1) == find(e2);
        }
    };
    
  5. 并查集示例
    • 题目
      • 如果两个user,a字段一样,或者b字段一样、或者c字段一样,就认为是同一个人
      • 请合并user,并返回合并后的人数
struct User {
	string a;
	string b;
	string c;
	User(string a1, string b1, string c1) : a(a1), b(b1), c(c1){} 
};



少年,我观你骨骼清奇,颖悟绝伦,必成人中龙凤。
不如点赞·收藏·关注一波

🚩点此跳转到首行↩︎

参考博客

  1. 知乎并查集
  2. 待定引用
  3. 待定引用
  4. 待定引用

http://www.kler.cn/a/136283.html

相关文章:

  • 二、智能体强化学习——深度强化学习核心算法
  • 算法(二)——一维差分、等差数列差分
  • 深入浅出负载均衡:理解其原理并选择最适合你的实现方式
  • stringRedisTemplate.execute执行lua脚本
  • 语音机器人外呼的缺点
  • 世优波塔数字人 AI 大屏再升级:让智能展厅讲解触手可及
  • k8s的高可用集群搭建,详细过程实战版
  • 原型模式-C++实现
  • 《崩坏:星穹铁道》1.5仙舟罗浮-绥园全宝箱攻略
  • 【Linux】软连接和硬链接:创建、管理和解除链接的操作
  • Flutter 中数据存储的四种方式
  • 机器学习笔记 - Ocr识别中的CTC算法原理概述
  • JVM:内存模型、内存分配机制、内存分配冲突、JVM垃圾标记算法、JVM1.8增加元数据区缘由
  • python中sklearn库在数据预处理中的详细用法,及5个常用的Scikit-learn(通常简称为 sklearn)程序代码示例
  • 机器学习第8天:SVM分类
  • 创新工具 | 教你6步用故事板设计用户体验事半功倍
  • 【计算机网络笔记】路由算法之链路状态路由算法
  • 集合的自反关系和对称关系
  • Wireshark 截取指定端口海量包分析
  • 【Spring Boot】如何集成Redis
  • 【心得】基于flask的SSTI个人笔记
  • Oracle 数据库中 查询时如何使用日期(时间)作为查询条件
  • 使用Python的turtle模块绘制玫瑰花图案(含详细Python代码与注释)
  • C++二分查找算法:132模式枚举3简洁版
  • IDEA版SSM入门到实战(Maven+MyBatis+Spring+SpringMVC) -Maven依赖管理,版本号管理,继承和聚合
  • 软件测试/测试开发/人工智能丨基于Spark的分布式造数工具:加速大规模测试数据构建