TensorFlow实战教程(二十八)-Keras实现BiLSTM微博情感分类和LDA主题挖掘分析
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章通过Keras深度学习构建CNN模型识别阿拉伯手写文字图像,一篇非常经典的图像分类文字。这篇文章将结合文本挖掘介绍微博情感分类知识,包括数据预处理、机器学习和深度学习的情感分类,后续结合LDA进行主题挖掘。基础性文章,希望对您有所帮助!
一.BiLSTM模型
LSTM的全称是Long Short-Term Memory,它是RNN(Recurrent Neural Network)的一种。LSTM由于其设计的特点,非常适合用于对时序数据的建模,如文本数据。BiLSTM是Bi-directional Long Short-Term Memory的缩写,是由前向LSTM与后向LSTM组合而成。两者在自然语言处理任务中都常被用来建模上下文信息。