多传感器融合SLAM调研
感知任务
物体识别:
- 《Pointnet: Deep learning on point sets for 3d classification and segmentation》
- 《Voxelnet: End-to-end learning for point cloud based 3d object detection》
语义分割:
- 《An integrated framework for autonomous driving: object detection, lane detection, and free space detection》
- 《 Freespace detection with deepnets for autonomous driving》
- 《Overview of image segmentation and its application on free space detection》
- 《Road curb and lanes detection for autonomous driving on urban scenarios》
- 《Lanenet: Realtime lane detection networks for autonomous driving》
物体分类:
- 《Deep learning for lidar point clouds in autonomous driving: a review》
深度补全和预测:
- 《Are we ready for autonomous driving? the kitti vision benchmark suite》
多传感器融合
激光雷达/视觉融合:
从传统分类的角度来看,所有的多模态数据融合方法都可以分为数据级融合(前融合)、特征级融合(深度融合)和目标级融合(后融合)三种模式。
前融合方案:
- 《Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone》
- 《PointPainting: Sequential Fusion for 3D Object Detection》
- 《PI-RCNN: An Efficient Multi-Sensor 3D Object Detector with Point-Based Attentive Cont-Conv Fusion Module》
- 《Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds》
- 《Mvxnet: Multimodal voxelnet for 3d object detection》
特征级融合方案:
- 《RoIFusion: 3D Object Detection From LiDAR and Vision》
- 《EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection》
- 《MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion》
- 《SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation》
- 《Multi-View Adaptive Fusion Network for 3D Object Detection》
超声波(uss)与图像融合:
- 《Robust Sonar Feature Detection for the SLAM of Mobile Robot》
- 《Metric SLAM in Home Environment with Visual Objects and Sonar Features》
- 《SLAM with Visual Plane: Extracting Vertical Plane by Fusing Stereo Vision and Ultrasonic Sensor for Indoor Environment》
- 《A practical approach for EKF-SLAM in an indoor environment: fusing ultrasonic sensors and stereo camera》