当前位置: 首页 > article >正文

AMP State Evolution的计算:以伯努利先验为例

AMP State Evolution (SE)的计算

t = 1 t=1 t=1时, E ( t ) = E [ X 2 ] \mathcal E^{(t)} = \mathbb E [X^2] E(t)=E[X2],SE的迭代式为
τ r ( t ) = σ 2 + 1 δ E ( t ) E ( t + 1 ) = E ∣ η ( t ) ( X + Z ) − X ∣ 2 ,   Z ∼ N ( 0 , τ r ( t ) ) \begin{aligned} \tau^{(t)}_r &= \sigma^2 + \frac{1}{\delta} \mathcal E^{(t)} \\ \mathcal E^{(t+1)} &= \mathbb E \left | \eta^{(t)} \left ( X + Z \right) - X \right |^2, \ Z \sim \mathcal N(0, \tau^{(t)}_r) \end{aligned} τr(t)E(t+1)=σ2+δ1E(t)=E η(t)(X+Z)X 2, ZN(0,τr(t))

撰写的时候存在一定的符号乱用,之后的 τ \tau τ即指 τ r ( t ) \tau^{(t)}_r τr(t)

注意到, E ( t + 1 ) = E ∣ η ( t ) ( X + Z ) − X ∣ 2 \mathcal E^{(t+1)} = \mathbb E \left | \eta^{(t)} \left ( X + Z \right) - X \right |^2 E(t+1)=E η(t)(X+Z)X 2是关于随机变量 X , Z X, Z X,Z求期望,这里我们认为 X , Z X, Z X,Z之间相互独立,因此
E ( t + 1 ) = ∫ ∫ p X , Z ( X , Z ) ∣ η ( t ) ( X + Z ) − X ∣ 2 d X d Z \mathcal E^{(t+1)} = \int \int p_{X, Z}(X, Z) \left | \eta^{(t)} \left ( X + Z \right) - X \right |^2 dX dZ E(t+1)=∫∫pX,Z(X,Z) η(t)(X+Z)X 2dXdZ

R = X + Z R = X + Z R=X+Z,不难得到 p X , R ( X , R ) p_{X, R}(X, R) pX,R(X,R)等价于 p X , Z ( X , Z ) p_{X, Z}(X, Z) pX,Z(X,Z)(因为 p X , Z ( X = x 0 , Z = z 0 ) = p X , R ( X = x 0 , R = x 0 + z 0 ) p_{X, Z}(X=x_0, Z=z_0) = p_{X, R}(X=x_0, R=x_0 + z_0) pX,Z(X=x0,Z=z0)=pX,R(X=x0,R=x0+z0)),因此我们可以把 E ( t + 1 ) \mathcal E^{(t+1)} E(t+1)写为(这里我们考虑 η ( t ) \eta^{(t)} η(t)MMSE函数
E ( t + 1 ) = ∫ ∫ p X , R ( X , R ) ∣ η ( t ) ( R ) − X ∣ 2 d X d R = ∫ ∫ p R ( R ) p X ∣ R ( X ∣ R ) ∣ E [ X ∣ R ] − X ∣ 2 d X d R = ∫ p R ( R ) v a r [ X ∣ R ] d R \begin{aligned} \mathcal E^{(t+1)} &= \int \int p_{X, R}(X, R) \left | \eta^{(t)} \left ( R \right) - X \right |^2 dX dR \\ &= \int \int p_R(R) p_{X|R}(X|R) \left | \mathbb E\left [ X|R \right] - X \right |^2 dX dR \\ &= \int p_R(R) \mathrm{var}[X|R] dR \end{aligned} E(t+1)=∫∫pX,R(X,R) η(t)(R)X 2dXdR=∫∫pR(R)pXR(XR)E[XR]X2dXdR=pR(R)var[XR]dR

因为 p X , Z ( X , Z ) = p X ( X ) ⋅ p X ( Z ) = p X ( X ) N ( z ; 0 , τ r ( t ) ) p_{X, Z}(X, Z) = p_X(X) \cdot p_X(Z) = p_X(X) \mathcal N(z;0, \tau^{(t)}_r) pX,Z(X,Z)=pX(X)pX(Z)=pX(X)N(z;0,τr(t)),因此可以得到
p X , R ( X , R ) = p X ( X ) N ( R − X ; 0 , τ r ( t ) ) = p X ( X ) N ( R ; X , τ r ( t ) ) \begin{aligned} p_{X, R}(X, R) &= p_X(X) \mathcal N(R-X;0, \tau^{(t)}_r) \\ &= p_X(X) \mathcal N(R;X, \tau^{(t)}_r) \end{aligned} pX,R(X,R)=pX(X)N(RX;0,τr(t))=pX(X)N(R;X,τr(t))

X的先验为为伯努利分布时

p X ( X ) ≡ ( 1 − ρ ) δ ( X ) + ρ δ ( X − θ ) p_X(X) \equiv (1-\rho) \delta(X) + \rho \delta(X - \theta) pX(X)(1ρ)δ(X)+ρδ(Xθ)

那么, X , R X,R X,R的联合分布可写为
p X , R ( X , R ) = ( ( 1 − ρ ) δ ( X ) + ρ δ ( X − θ ) ) ⋅ N ( X ; R , τ r ( t ) ) = ( 1 − ρ ) δ ( X ) N ( X ; R , τ r ( t ) ) + ρ δ ( X − θ ) N ( X ; R , τ r ( t ) ) \begin{aligned} p_{X, R}(X, R) &= \left ((1-\rho) \delta(X) + \rho \delta(X - \theta) \right) \cdot \mathcal N(X;R, \tau^{(t)}_r) \\ &= (1-\rho) \delta(X) \mathcal N(X;R, \tau^{(t)}_r) + \rho \delta(X - \theta) \mathcal N(X;R, \tau^{(t)}_r) \end{aligned} pX,R(X,R)=((1ρ)δ(X)+ρδ(Xθ))N(X;R,τr(t))=(1ρ)δ(X)N(X;R,τr(t))+ρδ(Xθ)N(X;R,τr(t))

进一步,我们可以得到关于 R R R的边缘分布
p R ( R ) = ∫ p X , R ( X , R ) d X = ( 1 − ρ ) N ( 0 ; R , τ r ( t ) ) + ρ N ( θ ; R , τ r ( t ) ) = ( 1 − ρ ) N ( R ; 0 , τ r ( t ) ) + ρ N ( R ; θ , τ r ( t ) ) \begin{aligned} p_R(R) &= \int p_{X, R}(X, R) dX \\ &= (1-\rho) \mathcal N(0;R, \tau^{(t)}_r) + \rho \mathcal N(\theta;R, \tau^{(t)}_r) \\ &= (1-\rho) \mathcal N(R; 0, \tau^{(t)}_r) + \rho \mathcal N(R; \theta, \tau^{(t)}_r) \end{aligned} pR(R)=pX,R(X,R)dX=(1ρ)N(0;R,τr(t))+ρN(θ;R,τr(t))=(1ρ)N(R;0,τr(t))+ρN(R;θ,τr(t))

我们计算后验均值 E [ X ∣ R ] \mathbb E[X|R] E[XR]
E [ X ∣ R ] = ∫ X p X ∣ R ( X ∣ R ) d X = 1 p R ( R ) ∫ X p X , R ( X , R ) d X = 1 p R ( R ) ⋅ ρ ⋅ ∫ X δ ( X − θ ) N ( X ; R , τ r ( t ) ) d X = 1 p R ( R ) ⋅ ρ ⋅ θ ⋅ N ( R ; θ , τ r ( t ) ) = θ ⋅ ρ N ( R ; θ , τ r ( t ) ) ( 1 − ρ ) N ( R ; 0 , τ r ( t ) ) + ρ N ( R ; θ , τ r ( t ) ) = θ ⋅ 1 1 + 1 − ρ ρ ⋅ N ( R ; 0 , τ r ( t ) ) N ( R ; θ , τ r ( t ) ) = θ ⋅ 1 1 + 1 − ρ ρ ⋅ exp ⁡ {   − 2 θ R − θ 2 2 τ r ( t ) } \begin{aligned} \mathbb E[X|R] &= \int X p_{X|R} (X|R) dX \\ &= \frac{1}{p_R(R)} \int X p_{X,R} (X,R) dX \\ &= \frac{1}{p_R(R)} \cdot \rho \cdot \int X \delta(X - \theta) \mathcal N(X;R, \tau^{(t)}_r) dX \\ &= \frac{1}{p_R(R)} \cdot \rho \cdot \theta \cdot \mathcal N (R; \theta, \tau^{(t)}_r) \\ &= \theta \cdot \frac{ \rho \mathcal N (R; \theta, \tau^{(t)}_r) } {(1-\rho) \mathcal N(R; 0, \tau^{(t)}_r) + \rho \mathcal N(R; \theta, \tau^{(t)}_r) } \\ & = \theta \cdot \frac{ 1 } {1 + \frac{1-\rho}{\rho} \cdot \frac{ \mathcal N(R; 0, \tau^{(t)}_r) }{ \mathcal N(R; \theta, \tau^{(t)}_r) } } \\ &= \theta \cdot \frac{ 1 } {1 + \frac{1-\rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} } \end{aligned} E[XR]=XpXR(XR)dX=pR(R)1XpX,R(X,R)dX=pR(R)1ρXδ(Xθ)N(X;R,τr(t))dX=pR(R)1ρθN(R;θ,τr(t))=θ(1ρ)N(R;0,τr(t))+ρN(R;θ,τr(t))ρN(R;θ,τr(t))=θ1+ρ1ρN(R;θ,τr(t))N(R;0,τr(t))1=θ1+ρ1ρexp{ 2τr(t)2θRθ2}1

同理可得,
E [ X 2 ∣ R ] = θ ⋅ E [ X ∣ R ] \mathbb E[X^2|R] = \theta \cdot \mathbb E[X|R] E[X2R]=θE[XR]

因此
v a r [ X ∣ R ] = E [ X 2 ∣ R ] − E [ X ∣ R ] 2 \mathrm{var}[X|R] = \mathbb E[X^2|R] - \mathbb E[X|R]^2 var[XR]=E[X2R]E[XR]2

ψ ( R ) = 1 − ρ ρ ⋅ exp ⁡ {   − 2 θ R − θ 2 2 τ r ( t ) } \psi(R) =\frac{1-\rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} ψ(R)=ρ1ρexp{ 2τr(t)2θRθ2},则 v a r [ X ∣ R ] \mathrm{var}[X|R] var[XR]可写为
v a r [ X ∣ R ] = θ 2 1 2 + ψ ( R ) + 1 ψ ( R ) = θ 2 1 2 + 1 − ρ ρ ⋅ exp ⁡ {   − 2 θ R − θ 2 2 τ r ( t ) } + ρ 1 − ρ exp ⁡ {   2 θ R − θ 2 2 τ r ( t ) } \begin{aligned} \mathrm{var}[X|R] &= \theta^2 \frac{1}{ 2+ \psi(R) + \frac{1}{\psi(R) }} \\ &= \theta^2 \frac{1} { 2 + \frac{1- \rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} +\frac{\rho}{1-\rho} \exp \left \{\ \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \}} \end{aligned} var[XR]=θ22+ψ(R)+ψ(R)11=θ22+ρ1ρexp{ 2τr(t)2θRθ2}+1ρρexp{ 2τr(t)2θRθ2}1

进一步, E ( t + 1 ) \mathcal E^{(t+1)} E(t+1)可以表征为
E ( t + 1 ) = ∫ p R ( R ) v a r [ X ∣ R ] d R = θ 2 ∫ 1 2 + 1 − ρ ρ ⋅ exp ⁡ {   − 2 θ R − θ 2 2 τ r ( t ) } + ρ 1 − ρ ⋅ exp ⁡ {   2 θ R − θ 2 2 τ r ( t ) } ( ( 1 − ρ ) N ( R ; 0 , τ r ( t ) ) + ρ N ( R ; θ , τ r ( t ) ) ) d R \begin{aligned} \mathcal E^{(t+1)} &= \int p_R(R) \mathrm{var}[X|R] dR \\ &= \theta^2 \int \frac{1} { 2 + \frac{1- \rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} + \frac{\rho}{1-\rho} \cdot \exp \left \{\ \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \}} \left ( (1-\rho) \mathcal N(R; 0, \tau^{(t)}_r) + \rho \mathcal N(R; \theta, \tau^{(t)}_r) \right ) dR \end{aligned} E(t+1)=pR(R)var[XR]dR=θ22+ρ1ρexp{ 2τr(t)2θRθ2}+1ρρexp{ 2τr(t)2θRθ2}1((1ρ)N(R;0,τr(t))+ρN(R;θ,τr(t)))dR

总结

t = 1 t=1 t=1时, E ( t ) = E [ X 2 ] \mathcal E^{(t)} = \mathbb E [X^2] E(t)=E[X2],SE的迭代式为
τ r ( t ) = σ 2 + 1 δ E ( t ) E ( t + 1 ) = E ∣ η ( t ) ( X + Z ) − X ∣ 2 ,   Z ∼ N ( 0 , τ r ( t ) ) \begin{aligned} \tau^{(t)}_r &= \sigma^2 + \frac{1}{\delta} \mathcal E^{(t)} \\ \mathcal E^{(t+1)} &= \mathbb E \left | \eta^{(t)} \left ( X + Z \right) - X \right |^2, \ Z \sim \mathcal N(0, \tau^{(t)}_r) \end{aligned} τr(t)E(t+1)=σ2+δ1E(t)=E η(t)(X+Z)X 2, ZN(0,τr(t))

X X X的先验是伯努利时: X ∼ ( 1 − ρ ) δ ( X ) + ρ δ ( X − θ ) X \sim (1-\rho) \delta(X) + \rho \delta(X - \theta) X(1ρ)δ(X)+ρδ(Xθ),可以把SE表征为
t = 1 t=1 t=1时, E ( t ) = E [ X 2 ] = ρ ν \mathcal E^{(t)} = \mathbb E [X^2]= \rho \nu E(t)=E[X2]=ρν,SE的迭代式为
τ r ( t ) = σ 2 + 1 δ E ( t ) E ( t + 1 ) = θ 2 ∫ 1 2 + 1 − ρ ρ ⋅ exp ⁡ {   − 2 θ R − θ 2 2 τ r ( t ) } + ρ 1 − ρ ⋅ exp ⁡ {   2 θ R − θ 2 2 τ r ( t ) } ( ( 1 − ρ ) N ( R ; 0 , τ r ( t ) ) + ρ N ( R ; θ , τ r ( t ) ) ) d R \begin{aligned} \tau^{(t)}_r &= \sigma^2 + \frac{1}{\delta} \mathcal E^{(t)} \\ \mathcal E^{(t+1)} &= \theta^2 \int \frac{1} { 2 + \frac{1- \rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} + \frac{\rho}{1-\rho} \cdot \exp \left \{\ \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \}} \left ( (1-\rho) \mathcal N(R; 0, \tau^{(t)}_r) + \rho \mathcal N(R; \theta, \tau^{(t)}_r) \right ) dR \end{aligned} τr(t)E(t+1)=σ2+δ1E(t)=θ22+ρ1ρexp{ 2τr(t)2θRθ2}+1ρρexp{ 2τr(t)2θRθ2}1((1ρ)N(R;0,τr(t))+ρN(R;θ,τr(t)))dR

SE部分的MATLAB代码

Iteration = 40;
sigma2 = 0.2632;
rho = 0.1; % sparsity
v_g = 1 / rho; % variance/energy of the non-zero element (prior)
theta = sqrt(v_g);
delta = 0.6; % under-determined ratio
lim = inf;

SE_MSE = zeros(Iteration, 1);
SE_tau2 = zeros(Iteration, 1);

SE_MSE(1) = rho * v_g;
SE_tau2(1) = sigma2 + 1/delta * SE_MSE(1);

bound = 500;
fb = @(b) (b > bound) .* bound + (b < -bound) .* (-bound) + (abs(b) <= bound) .* b;  % bound < f(b) < bound
for it = 2: Iteration
    tau = SE_tau2( it - 1 );
    f = @(r) 1 ./ ...
        ( 2 + (1-rho)./rho .* exp( fb(-0.5 * ( 2 * theta .* r - theta .* theta) / tau ) )  + rho./(1-rho) .* exp( fb(0.5 * ( 2 * theta .* r - theta .* theta) / tau  )) ) ...
        .* ( (1-rho) .* normpdf(r, 0, sqrt(tau)) +  rho .* normpdf(r, theta, sqrt(tau)) );

    SE_MSE(it) = theta^2 * integral(f,-lim,lim);
    SE_tau2(it) = sigma2 + 1/delta * SE_MSE(it);
end

当N=40000时,AMP的MSE性能与SE一致


http://www.kler.cn/a/147510.html

相关文章:

  • 接口测试-postman(使用postman测试接口笔记)
  • 中国科技统计年鉴EXCEL版(2021-2023年)-社科数据
  • 微服务组件——利用SpringCloudGateway网关实现统一拦截服务请求,避免绕过网关请求服务
  • 【Go学习】-02-1-标准库:fmt、os、time
  • 【C语言】可移植性陷阱与缺陷(八): 随机数的大小
  • 英伟达 RTX 5090 显卡赋能医疗大模型:变革、挑战与展望
  • Python自动化办公:PDF文件的分割与合并
  • 【Golang】使用泛型对数组进行去重
  • Linux多路转接select,poll
  • 应用密码学期末复习(1)
  • A start job is running for Hold unt…s up (1d 18h 52min 25s / no limit) 如何去掉
  • 【Java Spring】SpringBoot 日志系统
  • uni-app中的onLoad不执行
  • 第二十章,多线程
  • Docker:深入解析Nexus技术构建可靠的软件仓库管理系统
  • centos用什么命令可查看版本号
  • Android保活系列之——进程优先级
  • python-爬虫(可直接使用)
  • Element-Plus 图标自动导入
  • 【密码学】【多方安全计算】不经意传输(Oblivious Transfer,OT)
  • JS作用域与作用域链
  • 2.3基于springboot养老院管理系统
  • 【Android知识笔记】性能优化专题(四)
  • springboot+vue实现websocket通信实例,进入页面建立连接
  • 浏览器触发下载Excel文件-Java实现
  • 一些可能被忽视的 Vue3 API 附带案例