数据结构-01-数组
每一种编程语言中,基本都会有数组这种数据类型。不过,它不仅仅是一种编程语言中的数据类型,还是一种最基础的数据结构。
1-数组的概念和特性
数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。
线性表(Linear List)就是数据排成像一条线一样的结构。每个线性表上的数据最多只有前和后两个方向。其实除了数组,链表、队列、栈等也是线性表结构。
连续的内存空间和相同类型的数据。正是因为这两个限制,它才有了一个堪称"杀手锏"的特性:"随机访问"。a[0]就是偏移为0的位置,也就是首地址,a[k]就表示偏移k个type_size的位置,所以计算a[k]的内存地址只需要用这个公式:a[k]_address = base_address + k * type_size
查询:数组支持随机访问,根据下标随机访问的时间复杂度为O(1)。查找的时间复杂度并不为O(1)。即便是排好序的数组,你用二分查找,时间复杂度也是O(logn)。
插入:假设数组的长度为n,现在,如果我们需要将一个数据插入到数组中的第k个位置。为了把第k个位置腾出来,给新来的数据,我们需要将第k~n这部分的元素都顺序地往后挪一位。如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为O(1)。但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是O(n)。 因为我们在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为(1+2+…n)/n=O(n)。
删除:如果我们要删除第k个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。如果删除数组末尾的数据,则最好情况时间复杂度为O(1);如果删除开头的数据,则最坏情况时间复杂度为O(n);平均情况时间复杂度也为O(n)。
思想:在某些特殊场景下,我们并不一定非得追求数组中数据的连续性。如果我们将多次删除操作集中在一起执行,删除的效率会高很多;比如JVM标记清除垃圾回收算法的核心思想 就是标记一下,然后一起删除。
2-高级语言的封装
针对数组类型,很多语言都提供了容器类,比如Java中的ArrayList;ArrayList最大的优势就是可以将很多数组操作的细节封装起来和支持动态扩容。
对比容器和数组优缺点:
(1)Java ArrayList无法存储基本类型,比如int、long,需要封装为Integer、Long类,而Autoboxing、Unboxing则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。
(2)如果数据大小事先已知,并且对数据的操作非常简单,用不到ArrayList提供的大部分方法,也可以直接使用数组。
(3)当要表示多维数组时,用数组往往会更加直观。比如Object[][] array;而用容器的话则需要这样定义:ArrayList<ArrayList > array。
对于业务开发,直接使用容器就足够了,省时省力。毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。但如果你是做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选。