当前位置: 首页 > article >正文

【Lidar】基于Python的点云数据下采样+体素显示

1 Open3D库介绍

        Open3D是一个开源的3D数据处理库,发布于2015年,目前已经更新到0.17.0版本。它基于MIT协议开源许可,使用C++11实现,并经过高度优化,还通过Python Pybinding提供了前端Python API。 Open3D为开发者提供了一组精心选择的数据结构和算法,内部实现高度优化并设置为并行化。它处理3D数据的各种应用,包括点云、网格、体积计算、可视化、深度学习、测量和场景图等。Open3D的目标是成为一个高效,可扩展和易用的3D数据处理库。

2 点云数据下采样代码

        代码中包含了以体素显示的方式采样、均匀下采样、随机下采样三种采样方式,后两种我已经注释掉了,有需要的可以自己修改。然后在显示函数中,将原始点云平移10个单位,然后同时显示原始和下采样后的点云用来对比查看。

# -*- coding: utf-8 -*-
"""
@Time : 2023/11/28 11:10
@Auth : RS迷途小书童
@File :Point Cloud Sample.py
@IDE :PyCharm
@Purpose:点云下采样,体素显示
"""
import open3d as o3d
import numpy as np


def Sample_Voxel(path, point_type):
    # 点云下采样、体素显示
    """
    :param path: 输入点云文件
    :param point_type: 输入点云格式
    :return: None
    """
    pcd = o3d.io.read_point_cloud(path, format=point_type, remove_nan_points=True,
                                  remove_infinite_points=True, print_progress=True)
    # 路径、输入格式、删除包含NAN的所有点、删除包含无限值的所有点、可视化进度条
    print(pcd)  # 输出点云点的个数
    print(np.asarray(pcd.points))  # 输出点的三维坐标
    down_pcd = pcd.voxel_down_sample(voxel_size=0.5)
    # 对原始的点云数据进行下采样,使用一个边长为0.03的体素
    # down_pcd = pcd.uniform_down_sample(every_k_points=10)  # 均匀下采样
    # down_pcd = pcd.random_down_sample(sampling_ratio=0.2)  # 随机下采样
    pcd = pcd.translate([10, 0, 0])  # 将原始的点云数据在x轴上平移4个单位,用于对比
    pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0, 1, (1, 3)))  # 随机颜色显示
    o3d.visualization.draw_geometries([down_pcd, pcd],
                                      zoom=0.3412,
                                      front=[0.4257, -0.2125, -0.8795],
                                      lookat=[2.6172, 2.0475, 1.532],
                                      up=[-0.0694, -0.9768, 0.2024])
    # zoom是缩放级别,front、lookat和up分别定义了相机的前向、观察点和上向向量,用于确定观察的视角
    o3d.io.write_point_cloud(r'3.xyz', down_pcd, write_ascii=False, compressed=False, print_progress=True)


if __name__ == "__main__":
    Path = r'433 - Cloud1 - Cloud.ply'
    Type = 'ply'
    Sample_Voxel(Path, Type)

Open3D库是一个非常强大的点云处理库,后续我会更新更多的相关代码,如果感兴趣可以关注我!


http://www.kler.cn/a/148374.html

相关文章:

  • 【C++学习(37)】并发性模式:如生产者-消费者、读写锁等。 架构模式:如MVC、MVVM等。属于23 种设计模式吗? RAII 的关系?
  • Rocky、Almalinux、CentOS、Ubuntu和Debian系统初始化脚本v9版
  • ARM架构中断与异常向量表机制解析
  • opencv常用api
  • WEB攻防-通用漏洞SQL注入sqlmapOracleMongodbDB2等
  • ssm100医学生在线学习交流平台+vue(论文+源码)_kaic
  • tauri中使用rust调用动态链接库例子(使用libloading库和libc库)
  • ubuntu22.04 arrch64版在线安装java环境
  • C语言-指针讲解(3)
  • 用通俗的方式讲解Transformer:从Word2Vec、Seq2Seq逐步理解到GPT、BERT
  • 人机交互3——多主题多轮对话
  • TOD和PPS精确时间同步技术
  • C#面向对象
  • 2023网络安全产业图谱
  • 02-Java集合之双列集合,如HashMap,Hashtable,Properties,TreeMap的底层结构
  • 人工智能技术发展漫谈
  • 【Linux】信号
  • 《2023全球隐私计算报告》正式发布!
  • C语言错误处理之“非局部跳转<setjmp.h>头文件”
  • python 爬虫之 爬取网站信息并保存到文件
  • C++初阶--String类的使用
  • TCP 传输可靠性问题
  • DMX512协议及对接口电路的分析
  • openssl版本号解析
  • HTML新手入门笔记整理:HTML基本标签
  • 【DevOps】SonarQube 指标解读