当前位置: 首页 > article >正文

卷积神经网络(CNN)注意力检测

文章目录

  • 一、前言
  • 二、前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1.加载数据
    • 2. 可视化数据
    • 4. 配置数据集
  • 三、调用官方网络模型
  • 四、设置动态学习率
  • 五、编译
  • 六、训练模型
  • 七、模型评估
    • 1. Accuracy与Loss图
    • 2. 混淆矩阵
  • 八、保存and加载模型
  • 九、预测

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别
  • 卷积神经网络(AlexNet)鸟类识别
  • 卷积神经网络(CNN)识别验证码
  • 卷积神经网络(CNN)车牌识别

来自专栏:机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

import pathlib
data_dir = "Eye_dataset"

data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)
图片总数为: 4307

二、数据预处理

1.加载数据

batch_size = 64
img_height = 224
img_width = 224

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 4307 files belonging to 4 classes.
Using 3446 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 4307 files belonging to 4 classes.
Using 861 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['close_look', 'forward_look', 'left_look', 'right_look']

2. 可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5
plt.suptitle("数据展示")

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(2, 4, i + 1)  
        
        ax.patch.set_facecolor('yellow')
        
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

  1. 再次检查数据
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(64, 224, 224, 3)
(64,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状240x240x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

4. 配置数据集

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、调用官方网络模型

model = tf.keras.applications.VGG16()
# 打印模型信息
model.summary()

四、设置动态学习率

这里先罗列一下学习率大与学习率小的优缺点。

  • 学习率大
    • 优点: 1、加快学习速率。 2、有助于跳出局部最优值。
    • 缺点: 1、导致模型训练不收敛。 2、单单使用大学习率容易导致模型不精确。
  • 学习率小
    • 优点: 1、有助于模型收敛、模型细化。 2、提高模型精度。
    • 缺点: 1、很难跳出局部最优值。 2、收敛缓慢。

注意:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=5,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.96,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

五、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer=optimizer,
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

六、训练模型

epochs = 20

history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)

七、模型评估

1. Accuracy与Loss图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 混淆矩阵

Seaborn 是一个画图库,它基于 Matplotlib 核心库进行了更高阶的 API 封装,可以让你轻松地画出更漂亮的图形。Seaborn 的漂亮主要体现在配色更加舒服、以及图形元素的样式更加细腻。

from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd

# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):
    
    # 生成混淆矩阵
    conf_numpy = confusion_matrix(labels, predictions)
    # 将矩阵转化为 DataFrame
    conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  
    
    plt.figure(figsize=(8,7))
    
    sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
    
    plt.title('混淆矩阵',fontsize=15)
    plt.ylabel('真实值',fontsize=14)
    plt.xlabel('预测值',fontsize=14)
val_pre   = []
val_label = []

for images, labels in val_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵
    for image, label in zip(images, labels):
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(image, 0) 
        # 使用模型预测图片中的人物
        prediction = model.predict(img_array)

        val_pre.append(class_names[np.argmax(prediction)])
        val_label.append(class_names[label])
plot_cm(val_label, val_pre)

在这里插入图片描述

八、保存and加载模型

这是最简单的模型保存与加载方法哈

# 保存模型
model.save('model/16_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/16_model.h5')

九、预测

九、预测
# 采用加载的模型(new_model)来看预测结果

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5
plt.suptitle("预测结果展示")

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(2, 4, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy().astype("uint8"))
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = new_model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")

在这里插入图片描述


http://www.kler.cn/a/150183.html

相关文章:

  • 【深度学习基础】常用图像卷积核类型
  • 常用的 Lambda 表达式案例解析
  • net core Autofac 替换默认的服务容器 DI,微软自动的容器 不支持命名选项的
  • PHP JSON 教程
  • PyQt5的安装与简介
  • 自适应对话式团队构建,提升语言模型代理的复杂任务解决能力
  • 统计英语单词
  • 在Docker上部署Springboot项目
  • 大一学编程怎么学?刚接触编程怎么学习,有没有中文编程开发语言工具?
  • 为什么预处理对象会提升处理的性能
  • 线性可分SVM摘记
  • java学习part23异常try catch
  • Elasticsearch:ES|QL 函数及操作符
  • HTTP常见响应码
  • 小航助学题库蓝桥杯题库c++选拔赛(22年1月)(含题库教师学生账号)
  • 对话式数据需求激增,景联文科技提供高质量多轮对话数据定制采集标注服务
  • 20. Matplotlib 数据可视化
  • 企业微信http协议接口调用,发送视频号消息
  • 荣耀冲击高端,一边推新「修路」,一边降价「拆桥」
  • 网络相关-面试高频
  • 自动化测试工具——Monkey
  • GANVAEDiffusion
  • Mysql之子查询(知识点+例题)
  • 知识蒸馏相关基础知识
  • Vue3框架中让table合计居中对齐
  • 自定义类型:结构体,枚举,联合