当前位置: 首页 > article >正文

常见的AI安全风险(数据投毒、后门攻击、对抗样本攻击、模型窃取攻击等)

文章目录

  • 数据投毒(Data Poisoning)
  • 后门攻击(Backdoor Attacks)
  • 对抗样本攻击(Adversarial Examples)
  • 模型窃取攻击(Model Extraction Attacks)
  • 参考资料

在这里插入图片描述

数据投毒(Data Poisoning)

数据投毒是一种通过在 训练数据 中植入恶意样本或修改数据以欺骗机器学习模型的方法。这种攻击旨在使模型 在未来的预测或决策中 产生错误结果。攻击者可能会植入具有误导性标签或特征的数据,以扭曲模型的学习过程,导致模型偏离真实数据的表征。数据投毒攻击可能在模型训练过程中不被察觉,但其影响可能在模型部署和运行时显现出来。

后门攻击(Backdoor Attacks)

后门攻击是一种在模型 训练过程 中植入后门或隐藏功能的方式。这些后门可能是针对特定输入触发的,使得模型在遇到这些特定标记或输入时产生意外行为。后门攻击的目的是在模型表现正常的情况下,对特定情况下的预测或决策进行操控,可能导致安全隐患或隐私泄露

【注】后门攻击和数据投毒攻击的异同点:

  • 相同点:
    • 都是发生在模型的训练阶段
  • 不同点:
    • 数据投毒:主要目的是使模型的泛化性能变差, 也即在测试集上的效果变差, 模型不能进行有效的学习, 甚至无法收敛。
    • 后门攻击:目的则是使模型学习到攻击者指定的内容, 其对 正常样本 仍旧具有良好的测试效果,但对于 中毒样本 则会输出攻击者预先设定的标签。

对抗样本攻击(Adversarial Examples)

对抗样本攻击是通过对输入数据进行微小但有针对性的修改,使得机器学习模型产生错误分类或错误预测的样本。这些微小的变化对人类观察几乎不可察觉,但足以使模型做出错误的推断。对抗样本攻击是针对模型的鲁棒性和稳定性,即使在面对微小扰动时也能保持准确性。

模型窃取攻击(Model Extraction Attacks)

模型窃取攻击是一种针对机器学习模型的攻击,旨在通过观察模型的输出并利用查询功能,从中 重建或复制 原始模型。攻击者可能使用额外的查询信息来近似或重建受攻击模型,从而破坏模型拥有者的 知识产权潜在商业优势

参考资料

  • 深度学习中的后门攻击综述,杜巍, 刘功申,2022信息安全学报

http://www.kler.cn/a/154975.html

相关文章:

  • 计算机的错误计算(二百二十二)
  • 【MySQL — 数据库增删改查操作】深入解析MySQL的create insert 操作
  • (5)STM32 USB设备开发-USB键盘
  • 第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组
  • 大数据学习(40)- Flink执行流
  • GA-CNN-LSTM-Attention、CNN-LSTM-Attention、GA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比
  • js中setinterval怎么用?怎么才能让setinterval停下来?
  • 微信小程序实现watch监听数值改变的效果
  • Kubernetes(K8s)_16_CSI
  • 时序预测 | Python实现LSTM长短期记忆神经网络时间序列预测(多图,多指标)
  • C#基础学习--命名空间和程序集
  • C语言之实现贪吃蛇小游戏篇(2)
  • Flink(九)【时间语义与水位线】
  • 开源播放器GSYVideoPlayer + ViewPager2 源码解析
  • 12.1 二叉树简单题
  • Redis--12--Redis分布式锁的实现
  • 【双指针】283. 移动零
  • 内网穿透工具获取一个公网ip
  • 提高wordpress网站收录速度,设置wp后台的“更新服务”功能
  • 【经验总结】网络关闭但ECU没有休眠前如何网络唤醒
  • Java 使用zxing生成二维码
  • Mybatis实用教程之XML实现动态sql
  • springboot教师进修培训管理系统设计与实现java+jsp
  • PX4 Bug汇总
  • 【Python百练——第3练】矩形类及操作
  • 创建内存泄漏(js的问题)