当前位置: 首页 > article >正文

轻量封装WebGPU渲染系统示例<42>- vsm阴影实现过程(源码)

前向实时渲染vsm阴影实现的主要步骤:

        1. 编码深度数据,存到一个rtt中。

        2. 纵向和横向执行遮挡信息blur filter sampling, 存到对应的rtt中。

        3. 将上一步的结果(rtt)应用到可接收阴影的材质中。

具体代码情况文章最后附上的实现源码。

当前示例源码github地址:

https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/BaseVSMShadowTest.ts

当前示例运行效果:

主要的WGSL Shader代码:

编码深度:

struct VertexOutput {
	@builtin(position) Position: vec4<f32>,
	@location(0) projPos: vec4<f32>,
	@location(1) objPos: vec4<f32>
}
@vertex
fn vertMain(
    @location(0) position: vec3<f32>
) -> VertexOutput {
    let objPos = vec4(position.xyz, 1.0);
    let wpos = objMat * objPos;
    var output: VertexOutput;
    let projPos = projMat * viewMat * wpos;
    output.Position = projPos;
    output.projPos = projPos;
    output.objPos = objPos;
    return output;
}

const PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)
const UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)

const PackFactors = vec3<f32>(256. * 256. * 256., 256. * 256., 256.);
const UnpackFactors = UnpackDownscale / vec4<f32>(PackFactors, 1.0);

const ShiftRight8 = 1. / 256.;

fn packDepthToRGBA(v: f32) -> vec4<f32> {
    var r = vec4<f32>(fract(v * PackFactors), v);
    let v3 = r.yzw - (r.xyz * ShiftRight8);
    r = vec4<f32>(v3.x, v3);
    return r * PackUpscale;
}

@fragment
fn fragMain(
    @location(0) projPos: vec4<f32>,
    @location(1) objPos: vec4<f32>
) -> @location(0) vec4<f32> {
    let fragCoordZ = 0.5 * projPos[2] / projPos[3] + 0.5;
    var color4 = packDepthToRGBA( fragCoordZ );
    return color4;
}

纵向和横向执行遮挡信息blur filter sampling:

struct VertexOutput {
	@builtin(position) Position: vec4<f32>,
	@location(0) uv: vec2<f32>
}
@vertex
fn vertMain(
    @location(0) position: vec3<f32>,
    @location(1) uv: vec2<f32>
) -> VertexOutput {
    var output: VertexOutput;
    output.Position = vec4(position.xyz, 1.0);
    output.uv = uv;
    return output;
}


const PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)
const UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)

const PackFactors = vec3<f32>(256. * 256. * 256., 256. * 256., 256.);
const UnpackFactors = UnpackDownscale / vec4<f32>(PackFactors, 1.0);

const ShiftRight8 = 1. / 256.;

fn packDepthToRGBA(v: f32) -> vec4<f32> {
    var r = vec4<f32>(fract(v * PackFactors), v);
    let v3 = r.yzw - (r.xyz * ShiftRight8);
    return vec4<f32>(v3.x, v3) * PackUpscale;
}


fn unpackRGBAToDepth( v: vec4<f32> ) -> f32 {
    return dot( v, UnpackFactors );
}

fn pack2HalfToRGBA( v: vec2<f32> ) -> vec4<f32> {
    let r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));
    return vec4<f32>( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);
}
fn unpackRGBATo2Half( v: vec4<f32> ) -> vec2<f32> {
    return vec2<f32>( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );
}

const SAMPLE_RATE = 0.25;
const HALF_SAMPLE_RATE = 0.125;
@fragment
fn fragMain(
    @location(0) uv: vec2<f32>,
) -> @location(0) vec4<f32> {
    
    var mean = 0.0;
    var squared_mean = 0.0;
    
    let resolution = viewParam.zw;
    let fragCoord = resolution * uv;
    
    let radius = param[3];
    let c4 = textureSample(shadowDepthTexture, shadowDepthSampler, uv);
    var depth = unpackRGBAToDepth( c4 );

    for ( var i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {

        #ifdef USE_HORIZONAL_PASS

            let distribution = unpackRGBATo2Half( textureSample(shadowDepthTexture, shadowDepthSampler, ( fragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );
            mean += distribution.x;
            squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;

        #else

            depth = unpackRGBAToDepth( textureSample(shadowDepthTexture, shadowDepthSampler, ( fragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );
            mean += depth;
            squared_mean += depth * depth;

        #endif

    }

    mean = mean * HALF_SAMPLE_RATE;
    squared_mean = squared_mean * HALF_SAMPLE_RATE;

    let std_dev = sqrt( squared_mean - mean * mean );

    var color4 = pack2HalfToRGBA( vec2<f32>( mean, std_dev ) );

    return color4;
}

应用到可接收阴影的材质中(示例用法):


struct VertexOutput {
	@builtin(position) Position: vec4<f32>,
	@location(0) uv: vec2<f32>,
	@location(1) worldNormal: vec3<f32>,
	@location(2) svPos: vec4<f32>
}
@vertex
fn vertMain(
    @location(0) position: vec3<f32>,
    @location(1) uv: vec2<f32>,
    @location(2) normal: vec3<f32>
) -> VertexOutput {
    let objPos = vec4(position.xyz, 1.0);
    let wpos = objMat * objPos;
    var output: VertexOutput;
    let projPos = projMat * viewMat * wpos;
    output.Position = projPos;
    // output.normal = normal;
    let invMat33 = inverseM33(m44ToM33(objMat));
    output.uv = uv;
    output.worldNormal = normalize(normal * invMat33);
    output.svPos = shadowMatrix * wpos;
    return output;
}

fn pack2HalfToRGBA( v: vec2<f32> ) -> vec4<f32> {
	let r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));
	return vec4<f32>( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);
}
fn unpackRGBATo2Half( v: vec4<f32> ) -> vec2<f32> {
	return vec2<f32>( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );
}

fn texture2DDistribution( uv: vec2<f32> ) -> vec2<f32> {
    let v4 = textureSample(shadowDepthTexture, shadowDepthSampler, uv );
    return unpackRGBATo2Half( v4 );

}
fn VSMShadow (uv: vec2<f32>, compare: f32 ) -> f32 {

    var occlusion = 1.0;

    let distribution = texture2DDistribution( uv );

    let hard_shadow = step( compare , distribution.x ); // Hard Shadow

    if (hard_shadow != 1.0 ) {

        let distance = compare - distribution.x ;
        let variance = max( 0.00000, distribution.y * distribution.y );
        var softness_probability = variance / (variance + distance * distance ); // Chebeyshevs inequality
        softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); // 0.3 reduces light bleed
        occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );

    }
    return occlusion;

}
fn getVSMShadow( shadowMapSize: vec2<f32>, shadowBias: f32, shadowRadius: f32, shadowCoordP: vec4<f32> ) -> f32 {

    var shadowCoord = vec4<f32>(shadowCoordP.xyz / vec3<f32>(shadowCoordP.w), shadowCoordP.z + shadowBias);
   
    let inFrustumVec = vec4<bool> ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );
    let inFrustum = all( inFrustumVec );

    let frustumTestVec = vec2<bool>( inFrustum, shadowCoord.z <= 1.0 );
    var shadow = VSMShadow( shadowCoord.xy, shadowCoord.z );
    if ( !all( frustumTestVec ) ) {
        shadow = 1.0;
    }
    return shadow;
}

@fragment
fn fragMain(
    @location(0) uv: vec2<f32>,
    @location(1) worldNormal: vec3<f32>,
    @location(2) svPos: vec4<f32>
) -> @location(0) vec4<f32> {
    var color = vec4<f32>(1.0);
    var shadow = getVSMShadow(params[1].xy, params[0].x, params[0].z, svPos );
    let shadowIntensity = 1.0 - params[0].w;
    shadow = clamp(shadow, 0.0, 1.0) * (1.0 - shadowIntensity) + shadowIntensity;
    var f = clamp(dot(worldNormal, params[2].xyz),0.0,1.0);
    if(f > 0.0001) {
        f = min(shadow,clamp(f, shadowIntensity,1.0));
    }else {
        f = shadowIntensity;
    }
    var color4 = vec4<f32>(color.xyz * vec3(f * 0.9 + 0.1), 1.0);
    return color4;
}

此示例基于此渲染系统实现,当前示例TypeScript源码如下:

export class BaseVSMShadowTest {
	private mRscene = new RendererScene();
	private mShadowCamera: Camera;
	private mDebug = false;
	initialize(): void {

		this.mRscene.initialize({
			canvasWith: 512,
			canvasHeight: 512,
			rpassparam: { multisampleEnabled: true }
		});
		this.initScene();
		this.initEvent();
	}

	private mEntities: Entity3D[] = [];
	private initScene(): void {

		let rc = this.mRscene;

		this.buildShadowCam();

		let sph = new SphereEntity({
			radius: 80,
			transform: {
				position: [-230.0, 100.0, -200.0]
			}
		});
		this.mEntities.push(sph);
		rc.addEntity(sph);

		let box = new BoxEntity({
			minPos: [-30, -30, -30],
			maxPos: [130, 230, 80],
			transform: {
				position: [160.0, 100.0, -210.0],
				rotation: [50, 130, 80]
			}
		});
		this.mEntities.push(box);
		rc.addEntity(box);

		let torus = new TorusEntity({
			transform: {
				position: [160.0, 100.0, 210.0],
				rotation: [50, 30, 80]
			}
		});
		this.mEntities.push(torus);
		rc.addEntity(torus);
		if (!this.mDebug) {
			this.applyShadow();
		}

	}
	private mShadowDepthRTT = { uuid: "rtt-shadow-depth", rttTexture: {}, shdVarName: 'shadowDepth' };
	private mOccVRTT = { uuid: "rtt--occV", rttTexture: {}, shdVarName: 'shadowDepth' };
	private mOccHRTT = { uuid: "rtt--occH", rttTexture: {}, shdVarName: 'shadowDepth' };
	private applyShadowDepthRTT(): void {

		let rc = this.mRscene;

		// rtt texture proxy descriptor
		let rttTex = this.mShadowDepthRTT;
		// define a rtt pass color colorAttachment0
		let colorAttachments = [
			{
				texture: rttTex,
				// green clear background color
				clearValue: { r: 1, g: 1, b: 1, a: 1.0 },
				loadOp: "clear",
				storeOp: "store"
			}
		];
		// create a separate rtt rendering pass
		let rPass = rc.createRTTPass({ colorAttachments });
		rPass.node.camera = this.mShadowCamera;

		let extent = [-0.5, -0.5, 0.8, 0.8];

		const shadowDepthShdSrc = {
			shaderSrc: { code: shadowDepthWGSL, uuid: "shadowDepthShdSrc" }
		};
		let material = this.createDepthMaterial(shadowDepthShdSrc);
		let es = this.createDepthEntities([material], false);
		for (let i = 0; i < es.length; ++i) {
			rPass.addEntity(es[i]);
		}

		// 显示渲染结果
		extent = [-0.95, -0.95, 0.4, 0.4];
		let entity = new FixScreenPlaneEntity({ extent, flipY: true, textures: [{ diffuse: rttTex }] });
		rc.addEntity(entity);
	}
	private applyBuildDepthOccVRTT(): void {
		let rc = this.mRscene;

		// rtt texture proxy descriptor
		let rttTex = this.mOccVRTT;
		// define a rtt pass color colorAttachment0
		let colorAttachments = [
			{
				texture: rttTex,
				// green clear background color
				clearValue: { r: 1, g: 1, b: 1, a: 1.0 },
				loadOp: "clear",
				storeOp: "store"
			}
		];
		// create a separate rtt rendering pass
		let rPass = rc.createRTTPass({ colorAttachments });
		let material = new ShadowOccBlurMaterial();

		let ppt = material.property;
		ppt.setShadowRadius(this.mShadowRadius);
		ppt.setViewSize(this.mShadowMapW, this.mShadowMapH);

		material.addTextures([this.mShadowDepthRTT]);
		let extent = [-1, -1, 2, 2];
		let rttEntity = new FixScreenPlaneEntity({ extent, materials: [material] });
		rPass.addEntity(rttEntity);

		// 显示渲染结果
		extent = [-0.5, -0.95, 0.4, 0.4];
		let entity = new FixScreenPlaneEntity({ extent, flipY: true, textures: [{ diffuse: rttTex }] });
		rc.addEntity(entity);
	}

	private applyBuildDepthOccHRTT(): void {
		let rc = this.mRscene;

		// rtt texture proxy descriptor
		let rttTex = this.mOccHRTT;
		// define a rtt pass color colorAttachment0
		let colorAttachments = [
			{
				texture: rttTex,
				// green clear background color
				clearValue: { r: 1, g: 1, b: 1, a: 1.0 },
				loadOp: "clear",
				storeOp: "store"
			}
		];
		// create a separate rtt rendering pass
		let rPass = rc.createRTTPass({ colorAttachments });
		let material = new ShadowOccBlurMaterial();
		let ppt = material.property;
		ppt.setShadowRadius(this.mShadowRadius);
		ppt.setViewSize(this.mShadowMapW, this.mShadowMapH);
		material.property.toHorizonalBlur();
		material.addTextures([this.mOccVRTT]);
		let extent = [-1, -1, 2, 2];
		let rttEntity = new FixScreenPlaneEntity({ extent, materials: [material] });
		rPass.addEntity(rttEntity);

		// 显示渲染结果
		extent = [-0.05, -0.95, 0.4, 0.4];
		let entity = new FixScreenPlaneEntity({ extent, flipY: true, textures: [{ diffuse: rttTex }] });
		rc.addEntity(entity);
	}
	private createDepthMaterial(shaderSrc: WGRShderSrcType, faceCullMode = "none"): WGMaterial {

		let pipelineDefParam = {
			depthWriteEnabled: true,
			faceCullMode,
			blendModes: [] as string[]
		};

		const material = new WGMaterial({
			shadinguuid: "shadow-depth_material",
			shaderSrc,
			pipelineDefParam
		});

		return material;
	}
	private createDepthEntities(materials: WGMaterial[], flag = false): Entity3D[] {

		const rc = this.mRscene;

		let entities = [];
		let ls = this.mEntities;
		let tot = ls.length;
		for (let i = 0; i < tot; ++i) {
			let et = ls[i];
			let entity = new Entity3D({ transform: et.transform });
			entity.materials = materials;
			entity.geometry = et.geometry;
			entities.push(entity);
			if (flag) {
				rc.addEntity(entity);
			}
		}
		return entities;
	}
	private mShadowBias = -0.0005;
	private mShadowRadius = 2.0;
	private mShadowMapW = 512;
	private mShadowMapH = 512;
	private mShadowViewW = 1300;
	private mShadowViewH = 1300;
	private buildShadowCam(): void {

		const cam = new Camera({
			eye: [600.0, 800.0, -600.0],
			near: 0.1,
			far: 1900,
			perspective: false,
			viewWidth: this.mShadowViewW,
			viewHeight: this.mShadowViewH
		});
		cam.update();
		this.mShadowCamera = cam;
		const rsc = this.mRscene;
		let frameColors = [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 1.0]];
		let boxFrame = new BoundsFrameEntity({ vertices8: cam.frustum.vertices, frameColors });
		rsc.addEntity(boxFrame);
	}
	private initEvent(): void {
		const rc = this.mRscene;
		rc.addEventListener(MouseEvent.MOUSE_DOWN, this.mouseDown);
		new MouseInteraction().initialize(rc, 0, false).setAutoRunning(true);
	}
	private mFlag = -1;
	private buildShadowReceiveEntity(): void {

		let cam = this.mShadowCamera;
		let transMatrix = new Matrix4();
		transMatrix.setScaleXYZ(0.5, -0.5, 0.5);
		transMatrix.setTranslationXYZ(0.5, 0.5, 0.5);
		let shadowMat = new Matrix4();
		shadowMat.copyFrom(cam.viewProjMatrix);
		shadowMat.append(transMatrix);

		let material = new ShadowReceiveMaterial();
		let ppt = material.property;

		ppt.setShadowRadius(this.mShadowRadius);
		ppt.setShadowBias(this.mShadowBias);
		ppt.setShadowSize(this.mShadowMapW, this.mShadowMapH);
		ppt.setShadowMatrix(shadowMat);
		ppt.setDirec(cam.nv);

		material.addTextures([this.mOccHRTT]);

		const rc = this.mRscene;
		let plane = new PlaneEntity({
			axisType: 1,
			extent: [-600, -600, 1200, 1200],
			transform: {
				position: [0, -1, 0]
			},
			materials: [material]
		});
		rc.addEntity(plane);
	}
	private applyShadow(): void {

		this.applyShadowDepthRTT();
		this.applyBuildDepthOccVRTT();
		this.applyBuildDepthOccHRTT();
		this.buildShadowReceiveEntity();
	}
	private mouseDown = (evt: MouseEvent): void => {
		this.mFlag++;
		if (this.mDebug) {
			if (this.mFlag == 0) {
				this.applyShadowDepthRTT();
			} else if (this.mFlag == 1) {
				this.applyBuildDepthOccVRTT();
			} else if (this.mFlag == 2) {
				this.applyBuildDepthOccHRTT();
			} else if (this.mFlag == 3) {
				this.buildShadowReceiveEntity();
			}
		}
	};
	run(): void {
		this.mRscene.run();
	}
}


http://www.kler.cn/a/156079.html

相关文章:

  • 【Java SE】接口类型
  • 10款PDF合并工具的使用体验与推荐!!!
  • Unity3D
  • 【Qt】在 Qt Creator 中使用图片资源方法(含素材网站推荐)
  • 【智谱开放平台-注册/登录安全分析报告】
  • 中兴光猫修改SN,MAC,修改地区,异地注册,改桥接,路由拨号
  • conda旧环境快速复制新环境
  • 使用mongodb实现简单的读写操作
  • Leetcode刷题详解——乘积为正数的最长子数组长度
  • 〖大前端 - 基础入门三大核心之JS篇㊻〗- JS + CSS实现动画
  • jvm的2种赋值机制
  • 唯创知音WT2605C语音芯片MP3音频IC:轻松实现指令随机播放与无缝循环播放等功能
  • Siemens-NXUG二次开发-C/C++/Python环境配置[20231204]
  • C++ 抽象类和接口 详解
  • django 创建表模型中的meta
  • leetcode 202 快乐数
  • nodejs微信小程序+python+PHP问卷调查系统的设计与实现-计算机毕业设计推荐
  • C++-模板
  • node.js-连接SQLserver数据库
  • 【算法】蓝桥杯2013国C 横向打印二叉树 题解
  • 【Java 基础】15 注解
  • 汇编学习记录
  • 常用数据预处理方法 python
  • 前缀和列题AcWing795
  • 本地缓存和分布式缓存
  • 冗余链路和生成树协议