当前位置: 首页 > article >正文

Matlab高光谱遥感、数据处理与混合像元分解及典型案例

站在学员的角度去理解“高光谱”,用大家能听的懂的语言去讲述高光谱的基本概念和理论,帮助学员深入理解这项技术的底层科学机理。方法篇,将高光谱技术与MATLAB工具结合起来,采用MATLAB丰富的工具箱,快速复现高光谱数据处理和分析过程,对学习到的理论和方法进行高效反馈。同时,充分发挥MATLAB草稿纸式的编程语言的简洁和易操作性,对每一行代码进行解析。实践篇,通过高光谱矿物识别,植物含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用领域的技术服务方案,结合MATLAB矩阵计算、科学数据可视化、数据处理与机器学习、图像处理等功能模块,深入介绍高光谱技术的应用功能开发。
您将通过高光谱遥感、电磁波谱、电磁波谱与物质的作用,光谱成像机理等基础理论,了解高光谱遥感的“底层逻辑”;从高光谱数据处理、光谱特征分析、图像分类、混合像元分解等技术中掌握高光谱遥感的“方法论”;在具体实践案例中,学会运用上述原理和技术方法,提升高光谱技术的应用能力水平。

内容详情:

第一章、理论基础

1、高光谱遥感

高光谱遥感是什么?—高光谱遥感基本概念;

高光谱遥感的三个特点—光谱分辨率高、光谱通道连续、光谱成像;

高光谱遥感为什么有用?—高光谱遥感产生动机和过程,基于cite space的高光谱技术热点分析。

2、高光谱遥感成像与数据处理

数字魔方游戏—高光谱成像机理与成像光谱仪;

谈反射率数据实际上是谈什么?—高光谱遥感数据类型、参数、元数据数据预处理(辐射校正、大气校正);

高光谱为什么要降维?—光谱特征提取,主成分分析(PCA)、最小噪声分离(MNF)。

3、高光谱遥感图像分类与混合像元分解

高光谱遥感图像分类与识别,监督分类与非监督分类。

无处不混合—混合光谱形成、物理机理;

线性与非线性模型—混合像元分解模型,线性光谱混合物理、数学模型,Hapke非线性模型。

第二章、Matlab开发基础

1、matlab软件介绍及安装、常用功能介绍

matlab版本介绍,安装;

Matlab软件界面,常用功能介绍;

过去踩过的那些坑—常见错误和使用注意,路径问题等

2、Matlab高光谱图像处理框架

Matlab高光谱图像处理框架组织与分析;

APP—高光谱查看器的使用介绍。主要界面,波段选择,波段组合图像显示和光谱可视化;

数据读写可视化、增强、校正、降维、光谱解混、光谱匹配等六组函数;

数据预处理(辐射校正、大气校正)Matlab模块介绍及解析。

3、Matlab精选案例及解析

高光谱遥感图像分类案例介绍及解析,SAM图像分类;

高光谱遥感图像解混案例介绍及解析,HFC、N-FINDR、spectralMatch、SID等程序。

第三章、Matlab高光谱数据处理技术

1高光谱成像数据处理及matlab实现

GF-5、资源02D卫星高光谱图像数据读取可视化(APP、函数)

2D\3D高光谱数据矩阵变换(函数)

2、地面波谱测量数据处理及matlab实现

便携式地物光谱仪(asd),数据读取,可视化(函数)

反射率因子数据计算(函数)

光谱曲线显示可视化(函数)

3、高光谱数据回归定量分析及matlab实现

高光谱回归分析数据整理(函数)

回归学习器,随机森林、线性、支持向量机等(APP、函数)

回归分析结果、误差分析可视化。(APP、函数)

第四章、Matlab混合像元分解技术

1、高光谱端元数量评估及matlab实现

Harsanyi-Farrand-Chang(NWHFC)噪声白化方法、Hysime高光谱数据的程序实现。

Hysime端元数量评估方法代码解析。

2、端元光谱提取及matlab实现

采用PPI、VCA等方法对高光谱数据的端元光谱进行提取。

VCA端元光谱提取的代码解析。

3、端元含量评估及matlab实现

采用最小二乘、稀疏运算等方法对高光谱数据的端元含量进行评估。

最小二乘端元含量评估方法代码解析。

第五章、典型案例操作实践

1.矿物填图案例:以甘肃某地区为例,采用资源02E数据进行绢云母、绿泥石等蚀变矿物信息提取和定量评估。涉及研究区高光谱影像读取、评估矿物种类数目、提取矿物端元光谱、利用光谱库进行识别、评估矿物含量、数据处理、矿物图可视化、结果输出等。

2.木材含水量算法案例:采用回归学习器对森林木材样品数据含水量进行定量分析,涉及高光谱数据读取、写入、高光谱回归分析数据整理,回归学习器,随机森林、线性、支持向量机等含水量评估、误差分析可视化。回归分析结果可视化、结果输出等。

3.土壤质量评估案例:基于航空高光谱、地面波谱测试数据对土壤质量参数进行评估,涉及航空、地面高光谱土壤调查方案设计、高光谱数据的预处理整体,土壤质量参数建模,结果可视化等。

 查看原文


http://www.kler.cn/a/15655.html

相关文章:

  • Python3.11.9+selenium,选择证书用多线程+键盘enter解决
  • Linux从0——1之shell编程4
  • GoogleCloud服务器的SSH连接配置
  • ADS项目笔记 1. 低噪声放大器LNA天线一体化设计
  • 当微软windows的记事本被AI加持
  • 接上篇-使用 element-plus 优化UI界面
  • 带你搞懂人工智能、机器学习和深度学习!
  • Springboot +Flowable,详细解释啥叫流程实例(一)
  • 前端系列第10集-实战篇
  • Linux:网络套接字
  • 【SpringBoot系列】实现跨域的几种方式
  • 院内导航方案怎么样?什么地图可以用于医院导航系统?
  • effective c++ item35-39
  • Apache Druid中Kafka配置远程代码执行漏洞(MPS-2023-6623)
  • 工厂能耗管理系统linux嵌入式边缘网关
  • 元宇宙展厅--音乐科技展厅
  • js字符串 常用方法 并带详细讲解
  • Java项目上线之云服务器环境篇(四)——Redis的安装与配置
  • 安卓开发_广播机制_发送自定义广播
  • RK3399平台开发系列讲解(LED子系统篇)LED子系统详解
  • Apache Zeppelin系列教程第一篇——安装和使用
  • springboot+nodejs+vue众筹项目管理系统平台系统
  • VUE入门神器
  • jvm调优策略
  • 牛客网Python入门103题练习|【07--循环语句(1)】
  • C语言入门篇——指针篇