当前位置: 首页 > article >正文

什么是数据增强,为什么会让模型更健壮?

在做一些图像分类训练任务时,我们经常会遇到一个很尴尬的情况,那就是:

明明训练数据集中有很多可爱猫咪的照片,但是当我们给训练好的模型输入一张戴着头盔的猫咪进行测试时,模型就不认识了,或者说识别精度很低。

很明显,模型的泛化能力太差,难道戴着头盔的猫咪就不是猫咪了吗?

今天就来说一个可以解决这类尴尬问题的方法,不需要从模型算法上下功夫,而是从训练数据集上下功夫。

那就是数据增强,查看链接:数据增强让模型更加鲁棒。

1、什么是数据增强

数据增强是一种通过对原始数据集进行变换,生成新的训练样本的技术。

这些变换包括图像翻转、旋转、缩放、裁剪以及其他各种手法。

通过引入这些变化,可以有效地扩充数据集的规模,提高模型的泛化能力。

是不是很简单?

将原始数据集做一些变换然后送给模型做训练,此时裁剪出来的图片,可能就是猫咪尖尖的耳朵和大大的眼睛,训练过程中模型依然会判断这是猫。

此时,如果在送给模型一只戴着头盔的猫,即使模型不认识头盔,它也认识猫耳朵,从而识别出来这是一只猫。

2、数据增强的好处

在训练模型的过程中,数据增强有几个关键的好处:

1. 泛化能力提升

数据增强有助于让模型更好地适应不同的输入,而不仅仅是训练集中的样本,这使得模型在面对新的、未曾见过的数据时更为稳健。

2. 防止过拟合:过拟合是模型过度适应训练数据,但在面对新数据时表现不佳的现象。

数据增强通过引入更多变化,有助于降低模型对训练数据的过于依赖,从而减轻过拟合风险。

3. 模型鲁棒性增强

引入各种变化有助于模型学习到更丰富、更复杂的特征,使其更能够处理现实中的复杂情况。

3、都有哪些方法做数据增强

数据增强的方法其实有很多,不同的方法适用于不同的数据和任务中:

1. 翻转:包括水平和垂直翻转,模拟不同视角下的图像。

2. 旋转:对图像进行旋转,增加不同角度的视角。

3. 缩放和裁剪:调整图像的尺寸,模拟远近不同的拍摄距离。

4. 平移:在图像上进行平移操作,改变物体在图像中的位置。

5. 变换:仿射变换,包括平移、旋转、缩放和剪切等操作。

6. 颜色空间变换:转换图像的颜色空间,增加图像的多样性。

7. 添加噪声:向图像中添加随机噪声,提高模型对噪声的鲁棒性。

8. 样本混合:将两个或多个样本的特征进行混合,生成新的样本。

总的来说,数据增强是提高模型性能的重要工具,这种方法不需要绞尽脑汁的去做算法优化和迭代,就可以产生很好的训练效果。

这让我想起了GPT这种大模型,他们之所以效果这么好,一方面是算法很牛,模型参数很多,另一方面是它的训练数据集是整个互联网上的数据。

大力出奇迹,只要数据足够多,模型就可以显的足够智能。

不知道有没有小伙伴在做模型训练时用过上述方法呢?

参考:^ 数据增强让模型更鲁棒


http://www.kler.cn/a/157218.html

相关文章:

  • 在 CentOS 8 系统上安装 Jenkins 的全过程
  • 强力巨彩租赁屏技术更新,适用多种户外应用场景
  • 活着就好20241226
  • 《Swift 字面量》
  • iClient3D for Cesium在Vue中快速实现场景卷帘
  • 深入探讨 Go 中的高级表单验证与翻译:Gin 与 Validator 的实践之道20241223
  • 电子学会C/C++编程等级考试2022年06月(四级)真题解析
  • 解释LED显示屏的裸眼3D特效原理
  • 第一个小记录达成:第一个年费会员用户
  • 计算社会学发展
  • Android wifi 框架以及Enable流程
  • 质量小议35 -- SQL注入
  • 【NI-RIO入门】Real Time(实时系统解释)
  • 开发工具idea中推荐插件
  • Flink入门之部署(二)
  • 工业机器视觉megauging(向光有光)使用说明书(十五,轻量级的visionpro)
  • 基于python和django旅游管理系统
  • Android11编译第八弹:root用户密码设置
  • Leetcode 2953. Count Complete Substrings
  • 电梯安全远程监控系统的主要作用和意义
  • 华清远见嵌入式学习——C++——作业3
  • PTA 7-223 sdut-C语言实验-求阶乘(循环结构)
  • 基于Java SSM教学管理系统
  • C语言 操作符详解
  • vue项目配置多个代理
  • SpringBoot集成Mybatis使用切面对所有Service的事务统一管理