【数据结构实验】树(一)构建二叉查找树(BST)
文章目录
- 1. 引言
- 2. 二叉查找树
- 3. 实验内容
- 3.1 实验题目
- (一)输入要求
- (二)输出要求
- 3.2 算法实现
- 1. 数据结构
- 2. 全局变量
- 3. 中序遍历函数InOrder
- 4. 二叉查找树的构建函数T
- 5. 主函数
- 3.3 代码整合
- 4. 实验结果
1. 引言
二叉查找树(Binary Search Tree,BST)是一种常用的数据结构,它在计算机科学和信息处理中有着广泛的应用。BST的特点是对于树中的每个节点,其左子树的所有节点值小于当前节点的值,而右子树的所有节点值大于当前节点的值。
本实验将通过C语言构建一个二叉查找树,分析其性能计算平均查找长度。
2. 二叉查找树
二叉查找树(Binary Search Tree,BST)是一种二叉树,其中每个节点都包含一个键值(key)和对应的数据(value)。而且对于任意节点,其左子树中的所有节点的键值都小于该节点的键值,而右子树中的所有节点的键值都大于该节点的键值。
二叉查找树的这种特性使得在查找、插入和删除节点时具有高效性。通过比较目标键值和当前节点的键值,可以在树中快速定位到目标节点或确定插入、删除的位置。在平均情况下,这些操作的时间复杂度为O(log n),其中n是二叉查找树中节点的数量。
除了高效的查找操作,二叉查找树还支持有序性操作。通过中序遍历二叉查找树,可以按照键值的顺序输出树中的所有节点,从而实现对节点的有序访问。
需要注意的是,如果二叉查找树的节点插入和删除不平衡,即树的高度不均衡地增长,可能会导致查找、插入和删除操作的最坏情况时间复杂度为O(n),其中n是树中节点的数量。为了解决这个问题,可以使用自平衡的二叉查找树,如红黑树(Red-Black Tree)或AVL树,来保持树的平衡性。
3. 实验内容
3.1 实验题目
实现教材 287 页底部的算法 T,从无到有创建一棵二叉查找树,输出中根遍历序列,并编程计算查找成功时的平均查找长度。
(一)输入要求
char *A[30]={
"THE","OF","AND","TO","A",
"IN","THAT","IS","WAS","HE",
"FOR","IT","WITH","AS","HIS",
"ON","BE","AT","BY","I",
"THIS","HAD","NOT","ARE","BUT",
"FROM","OR","HAVE","AN","THEY",
};
(二)输出要求
- 输出该二叉查找树的中根遍历序列;
- 输出该二叉查找树查找成功时的平均查找长度。
3.2 算法实现
1. 数据结构
typedef struct P {
char *key;
struct P* llink;
struct P* rlink;
} P;
2. 全局变量
P *root;
int Sum = 0;
3. 中序遍历函数InOrder
void InOrder(P *t)
{
if(t==NULL) return;
else{
InOrder(t->llink);
printf("%s\n",t->key);
InOrder(t->rlink);
}
}
- 递归地进行中序遍历,输出节点的关键词。
4. 二叉查找树的构建函数T
P* T(char *ch) {
if (root == NULL) {
root = (P*)malloc(sizeof(P));
root->key = strdup(ch);
root->llink = NULL;
root->rlink = NULL;
return NULL;
}
P* p = root;
while (p != NULL) {
Sum++;
if (strcmp(ch, p->key) == 0)
return p;
if (strcmp(ch, p->key) < 0) {
if (p->llink == NULL)
break;
else
p = p->llink;
}
else {
if (p->rlink == NULL)
break;
else
p = p->rlink;
}
}
P* q = (P*)malloc(sizeof(P));
q->key = strdup(ch);
q->llink = NULL;
q->rlink = NULL;
if (strcmp(ch, p->key) < 0)
p->llink = q;
else
p->rlink = q;
return NULL;
}
- 若树为空,直接创建根节点。
- 若树不为空,根据二叉查找树的性质找到合适的位置插入新的节点。
5. 主函数
int main() {
char *A[30]={
"THE","OF","AND","TO","A",
"IN","THAT","IS","WAS","HE",
"FOR","IT","WITH","AS","HIS",
"ON","BE","AT","BY","I",
"THIS","HAD","NOT","ARE","BUT",
"FROM","OR","HAVE","AN","THEY",
};
int M = 30, i;
for (i = 0; i < M; i++) {
char *ch;
ch = A[i];
P* s = T(ch);
}
printf("中序遍历:\n");
InOrder(root);
Sum = 0;
for (i = 0; i < M; i++) {
char *ch;
ch = A[i];
P* s = T(ch);
}
printf("平均查找长度为%f", (float)Sum / M);
// 释放节点的关键词内存
for (i = 0; i < M; i++) {
free(A[i]);
}
return 0;
}
- 利用关键词数组
A
构建二叉查找树。 - 输出中序遍历结果。
- 再次构建二叉查找树,计算平均查找长度,并输出。
3.3 代码整合
#include<stdio.h>
#include<string.h>
#include<malloc.h>
typedef struct P {
char *key;
struct P* llink;
struct P* rlink;
} P;
P *root;
int Sum = 0;
void InOrder(P *t) {
if (t == NULL)
return;
else {
InOrder(t->llink);
printf("%s\n", t->key);
InOrder(t->rlink);
}
}
P* T(char *ch) {
if (root == NULL) {
root = (P*)malloc(sizeof(P));
root->key = strdup(ch);
root->llink = NULL;
root->rlink = NULL;
return NULL;
}
P* p = root;
while (p != NULL) {
Sum++;
if (strcmp(ch, p->key) == 0)
return p;
if (strcmp(ch, p->key) < 0) {
if (p->llink == NULL)
break;
else
p = p->llink;
}
else {
if (p->rlink == NULL)
break;
else
p = p->rlink;
}
}
P* q = (P*)malloc(sizeof(P));
q->key = strdup(ch);
q->llink = NULL;
q->rlink = NULL;
if (strcmp(ch, p->key) < 0)
p->llink = q;
else
p->rlink = q;
return NULL;
}
int main() {
char *A[30]={
"THE","OF","AND","TO","A",
"IN","THAT","IS","WAS","HE",
"FOR","IT","WITH","AS","HIS",
"ON","BE","AT","BY","I",
"THIS","HAD","NOT","ARE","BUT",
"FROM","OR","HAVE","AN","THEY",
};
int M = 30, i;
for (i = 0; i < M; i++) {
char *ch;
ch = A[i];
P* s = T(ch);
}
printf("中序遍历:\n");
InOrder(root);
Sum = 0;
for (i = 0; i < M; i++) {
char *ch;
ch = A[i];
P* s = T(ch);
}
printf("平均查找长度为%f", (float)Sum / M);
// 释放节点的关键词内存
for (i = 0; i < M; i++) {
free(A[i]);
}
return 0;
}
4. 实验结果
中序遍历:
A
AN
AND
ARE
AS
AT
BE
BUT
BY
FOR
FROM
HAD
HAVE
HE
HIS
I
IN
IS
IT
NOT
OF
ON
OR
THAT
THE
THEY
THIS
TO
WAS
WITH
平均查找长度为5.433333