分部积分法习题
前置知识:分部积分法
例题
计算积分 I n = ∫ [ ( x + a ) 2 + b 2 ] − k d x ( n ≥ 1 ) I_n=\int [(x+a)^2+b^2]^{-k}dx \quad(n\geq 1) In=∫[(x+a)2+b2]−kdx(n≥1)
解:
\qquad
用分部积分法,对任何自然数
k
≥
1
k\geq 1
k≥1,有
I k = ∫ d x [ ( x + a ) 2 + b 2 ] d x = x + a [ ( x + a ) 2 + b 2 ] k + 2 k ∫ ( x + a ) 2 [ ( x + a ) 2 + b 2 ] k + 1 d x \qquad I_k=\int\dfrac{dx}{[(x+a)^2+b^2]}dx=\dfrac{x+a}{[(x+a)^2+b^2]^k}+2k\int\dfrac{(x+a)^2}{[(x+a)^2+b^2]^{k+1}}dx Ik=∫[(x+a)2+b2]dxdx=[(x+a)2+b2]kx+a+2k∫[(x+a)2+b2]k+1(x+a)2dx
= x + a [ ( x + a ) 2 + b 2 ] k + 2 k ∫ [ 1 ( ( x + a ) 2 + b 2 ) k − b 2 ( ( x + a ) 2 + b 2 ) k + 1 ] d x \qquad \qquad =\dfrac{x+a}{[(x+a)^2+b^2]^k}+2k\int[\dfrac{1}{((x+a)^2+b^2)^k}-\dfrac{b^2}{((x+a)^2+b^2)^{k+1}}]dx =[(x+a)2+b2]kx+a+2k∫[((x+a)2+b2)k1−((x+a)2+b2)k+1b2]dx
= x + a [ ( x + a ) 2 + b 2 ] k + 2 k I k − 2 k b 2 ⋅ I k + 1 \qquad \qquad =\dfrac{x+a}{[(x+a)^2+b^2]^k}+2kI_k-2kb^2\cdot I_{k+1} =[(x+a)2+b2]kx+a+2kIk−2kb2⋅Ik+1
由此可得 I k I_k Ik的递推公式为
I k + 1 = 1 2 k b 2 [ x ( x 2 + b 2 ) − k + ( 2 k − 1 ) I k ] I_{k+1}=\dfrac{1}{2kb^2}[x(x^2+b^2)^{-k}+(2k-1)I_k] Ik+1=2kb21[x(x2+b2)−k+(2k−1)Ik]
当 k = 1 k=1 k=1时,直接计算可得
I 1 = ∫ 1 ( x + a ) 2 + b 2 d x = 1 b ∫ d ( x + a b ) 1 + ( x + a b ) 2 = 1 b arctan ( x + a b ) + C I_1=\int \dfrac{1}{(x+a)^2+b^2}dx=\dfrac 1b\int \dfrac{d(\frac{x+a}{b})}{1+(\frac{x+a}{b})^2}=\dfrac 1b\arctan(\dfrac{x+a}{b})+C I1=∫(x+a)2+b21dx=b1∫1+(bx+a)2d(bx+a)=b1arctan(bx+a)+C
再由递推公式可得 I 2 , I 3 . … , I n I_2,I_3.\dots,I_n I2,I3.…,In的表达式。