当前位置: 首页 > article >正文

三部曲法求未定式极限中的1无穷次方型

文章目录

1 ∞ 1^\infin 1型幂指函数的极限👺

  • 这类极限问题属于未定式,若极限存在,则应该为 e e e相关的式子,也可能极限不存在(尽管大多数我们遇到的都是极限存在的情形)

分离常数变形

  • 有时,需要使用分离常数的技巧将函数的形式转换为 f ( x ) = ( 1 + α ( x ) ) β ( x ) {f(x)=(1+\alpha (x))^{\beta(x)}} f(x)=(1+α(x))β(x)的形式,
    • 例如: ( x + 1 x − 3 ) x = ( x − 3 + 3 + 1 x − 3 ) x = ( 1 + 4 x − 3 ) x (\frac{x+1}{x-3})^x=(\frac{x-3+3+1}{x-3})^x=(1+\frac{4}{x-3})^{x} (x3x+1)x=(x3x3+3+1)x=(1+x34)x

分子分母同时除以变化最快项

  • 这种方法有时比分离常数更加方便和直接
  • 通常用在含 ∞ \infin 的情形下
    • lim ⁡ n → ∞ n n ( n + 1 ) n + 1 \lim\limits_{n\to{\infin}}\frac{n^{n}}{(n+1)^{n+1}} nlim(n+1)n+1nn= lim ⁡ n → ∞ 1 n + 1 ( n n + 1 ) n \lim\limits_{n\to{\infin}}\frac{1}{n+1}(\frac{n}{n+1})^{n} nlimn+11(n+1n)n= lim ⁡ n → ∞ 1 n + 1 ( 1 1 + 1 n ) n \lim\limits_{n\to{\infin}}\frac{1}{n+1}(\frac{1}{1+\frac{1}{n}})^{n} nlimn+11(1+n11)n= lim ⁡ n → ∞ 1 n + 1 ( 1 ( 1 + 1 n ) n ) \lim\limits_{n\to{\infin}}\frac{1}{n+1}(\frac{1}{(1+\frac{1}{n})^{^{n}}}) nlimn+11((1+n1)n1)= lim ⁡ n → ∞ 1 n + 1 ⋅ lim ⁡ n → ∞ ( 1 ( 1 + 1 n ) n ) \lim\limits_{n\to{\infin}}\frac{1}{n+1} \cdot \lim\limits_{n\to{\infin}}(\frac{1}{(1+\frac{1}{n})^{^{n}}}) nlimn+11nlim((1+n1)n1)= 0 ⋅ 1 e 0\cdot{\frac{1}{e}} 0e1=0

速算结论👺(三部曲)

  • 如果判断出 f ( x ) = ( 1 + α ( x ) ) β ( x ) {f(x)=(1+\alpha (x))^{\beta(x)}} f(x)=(1+α(x))β(x)的某个过程的极限属于 1 ∞ 1^\infin 1型的情况下求极限 S = lim ⁡ f ( x ) S=\lim f(x) S=limf(x),则可以按如下步骤求解

    1. 先计算出 A = lim ⁡ ( α ( x ) β ( x ) ) A=\lim(\alpha(x)\beta(x)) A=lim(α(x)β(x))

    2. 那么: S = e A S=e^A S=eA,也即是说,结果是 e e e的幂的形式

证明

  • α ( x ) , β ( x ) \alpha(x),\beta(x) α(x),β(x)分别极限过程 x → ∗ x\to{*} x的无穷小量和无穷大量,即 lim ⁡ α ( x ) = 0 \lim{\alpha(x)}=0 limα(x)=0, lim ⁡ β ( x ) = ∞ \lim\beta(x)=\infin limβ(x)=
  • γ ( x ) = α ( x ) β ( x ) \gamma(x)=\alpha(x)\beta(x) γ(x)=α(x)β(x); β ( x ) = 1 α ( x ) α ( x ) β ( x ) \beta(x)=\frac{1}{\alpha(x)}\alpha(x)\beta(x) β(x)=α(x)1α(x)β(x)= 1 α ( x ) γ ( x ) \frac{1}{\alpha(x)}\gamma(x) α(x)1γ(x)
  • S = lim ⁡ ( 1 + α ( x ) ) β ( x ) S=\lim(1+\alpha(x))^{\beta(x)} S=lim(1+α(x))β(x)= lim ⁡ ( 1 + α ( x ) ) 1 α ( x ) α ( x ) β ( x ) \lim(1+\alpha(x))^{\frac{1}{\alpha(x)}\alpha(x)\beta(x)} lim(1+α(x))α(x)1α(x)β(x)= lim ⁡ ( ( ( 1 + α ( x ) ) 1 α ( x ) ) γ ( x ) \lim{(((1+\alpha(x))^\frac{1}{\alpha(x)}})^{\gamma(x)} lim(((1+α(x))α(x)1)γ(x)= [ lim ⁡ ( ( ( 1 + α ( x ) ) 1 α ( x ) ) ] γ ( x ) [\lim{(((1+\alpha(x))^\frac{1}{\alpha(x)}})]^{\gamma(x)} [lim(((1+α(x))α(x)1)]γ(x)= e γ ( x ) e^{\gamma(x)} eγ(x)
  • A = lim ⁡ γ ( x ) A=\lim{\gamma(x)} A=limγ(x),则 S = e A S=e^{A} S=eA

应用

  • 以下3个的 1 ∞ 1^\infin 1型极限都可以用 e A e^A eA模型法来计算,先确定 α ( x ) 和 β ( x ) \alpha{(x)}和\beta{(x)} α(x)β(x)
    • S 1 = lim ⁡ x → ∞ ( 1 − 1 x ) x S_1=\lim\limits_{x\to \infin}(1-\frac{1}{x})^x S1=xlim(1x1)x

    • S 2 = lim ⁡ x → ∞ ( 1 + a x ) b x S_2=\lim\limits_{x\to \infin}{(1+\frac{a}{x})^{bx}} S2=xlim(1+xa)bx

    • S 3 = lim ⁡ x → ∞ ( 1 + a x ) b x + c S_3=\lim\limits_{x\to \infin}(1+\frac{a}{x})^{bx+c} S3=xlim(1+xa)bx+c

  • 分别计算 A 1 , A 2 , A 3 A_1,A_2,A_3 A1,A2,A3
    • A 1 = lim ⁡ x → ∞ − 1 x x = − 1 A_1=\lim\limits_{x\to \infin} \frac{-1}{x}x=-1 A1=xlimx1x=1

    • A 2 = lim ⁡ x → ∞ a x b x = a b A_2=\lim\limits_{x\to \infin} \frac{a}{x}bx=ab A2=xlimxabx=ab

    • A 3 = lim ⁡ x → ∞ a x ( b x + c ) = a b A_3=\lim\limits_{x\to \infin} \frac{a}{x}(bx+c)=ab A3=xlimxa(bx+c)=ab

  • S 1 = e − 1 S_1=e^{-1} S1=e1, S 2 = e a b S_2=e^{ab} S2=eab, S 3 = e a b S_3=e^{ab} S3=eab
逐步演算
  • lim ⁡ x → ∞ ( 1 − 1 x ) x \lim\limits_{x\to \infin}{(1-\frac{1}{x})}^x xlim(1x1)x= lim ⁡ x → ∞ ( 1 − 1 x ) − ( − x ) \lim\limits_{x\to \infin}{(1-\frac{1}{x})}^{-(-x)} xlim(1x1)(x)= lim ⁡ x → ∞ 1 ( 1 − 1 x ) − x \lim\limits_{x\to \infin}\frac{1}{{{(1-\frac{1}{x})}^{-x}}} xlim(1x1)x1= lim ⁡ x → ∞ 1 lim ⁡ x → ∞ ( 1 − 1 x ) − x \frac{\lim\limits_{x\to \infin}1}{\lim\limits_{x\to \infin}(1-\frac{1}{x})^{-x}} xlim(1x1)xxlim1= 1 e \frac{1}{e} e1

  • lim ⁡ x → ∞ ( 1 + a x ) b x \lim\limits_{x\to \infin}{(1+\frac{a}{x})^{bx}} xlim(1+xa)bx= lim ⁡ x → ∞ ( 1 + a x ) x a a b \lim\limits_{x\to \infin}{(1+\frac{a}{x})}^{\frac{x}{a}ab} xlim(1+xa)axab= lim ⁡ x → ∞ \lim\limits_{x\to \infin} xlim ( ( 1 + a x ) x a ) a b \left ({(1+\frac{a}{x})}^{\frac{x}{a}}\right)^{ab} ((1+xa)ax)ab= e a b e^{ab} eab

  • lim ⁡ x → ∞ ( 1 + a x ) b x + c \lim\limits_{x\to \infin}{(1+\frac{a}{x})}^{bx+c} xlim(1+xa)bx+c= lim ⁡ x → ∞ ( 1 + a x ) b x \lim\limits_{x\to \infin}{(1+\frac{a}{x})}^{bx} xlim(1+xa)bx ⋅ \cdot lim ⁡ x → ∞ ( 1 + a x ) c \lim\limits_{x\to \infin}{(1+\frac{a}{x})}^{c} xlim(1+xa)c= e a b ⋅ 1 c e^{ab}\cdot 1^c eab1c= e a b ⋅ 1 e^{ab}\cdot 1 eab1= e a b e^{ab} eab

  • f ( x ) f(x) f(x)= ( x + 2 x ) 2 x (x+2^{x})^{\frac{2}{x}} (x+2x)x2, S = lim ⁡ x → 0 f ( x ) S=\lim\limits_{x\to{0}}{f(x)} S=x0limf(x)=?
    • 这是一个 1 ∞ 1^{\infin} 1的未定式
  • 方法1
    • f ( x ) f(x) f(x)变形: f ( x ) f(x) f(x)= ( 1 + x + 2 x − 1 ) 2 x (1+x+2^{x}-1)^{\frac{2}{x}} (1+x+2x1)x2
    • 根据上述结论,求 A A A= lim ⁡ x → 0 ( x + 2 x − 1 ) ⋅ 2 x \lim\limits_{x\to{0}}(x+2^{x}-1)\cdot{\frac{2}{x}} x0lim(x+2x1)x2= 2 ( lim ⁡ x → 0 ( x + 2 x − 1 ) ⋅ 1 x ) 2(\lim\limits_{x\to{0}}(x+2^{x}-1)\cdot{\frac{1}{x}}) 2(x0lim(x+2x1)x1)= 2 ( 1 + lim ⁡ x → 0 2 x − 1 x ) 2(1+\lim\limits_{x\to{0}}\frac{2^{x}-1}{x}) 2(1+x0limx2x1)= 2 ( 1 + ln ⁡ 2 ) 2(1+\ln{2}) 2(1+ln2)
      • lim ⁡ x → 0 2 x − 1 x \lim\limits_{x\to{0}}\frac{2^{x}-1}{x} x0limx2x1= lim ⁡ x → 0 x ln ⁡ 2 x \lim\limits_{x\to{0}}\frac{x\ln{2}}{x} x0limxxln2= ln ⁡ 2 \ln{2} ln2
    • 于是 S = e A S=e^{A} S=eA= ( e 1 + ln ⁡ 2 ) 2 (e^{1+\ln{2}})^{2} (e1+ln2)2= ( e ⋅ 2 ) 2 (e\cdot{2})^2 (e2)2= 4 e 2 4e^{2} 4e2
  • 方法2
    • f ( x ) f(x) f(x)= [ 2 x ( x 2 x + 1 ) ] 2 x [2^{x}(\frac{x}{2^{x}}+1)]^{\frac{2}{x}} [2x(2xx+1)]x2
    • S S S= 4 ⋅ lim ⁡ x → 0 ( 1 + x 2 x ) 2 x 4\cdot{\lim\limits_{x\to{0}}}(1+\frac{x}{2^{x}})^{\frac{2}{x}} 4x0lim(1+2xx)x2
      • A = lim ⁡ x → 0 x 2 x ⋅ 2 x A=\lim\limits_{x\to{0}}\frac{x}{2^{x}}\cdot{\frac{2}{x}} A=x0lim2xxx2= 2 2 2
    • S S S= 4 e 2 4e^{2} 4e2

  • lim ⁡ x → 0 ( ∫ 0 x 2 3 e 1 2 t 2 d t − x 2 3 + 1 ) 1 x 2 = 1 \lim\limits_{x\to{0}}\left( \int_{0}^{\sqrt[3]{x^2}}{e^{\frac{1}{2}t^2}}\mathrm{d}t-x^{\frac{2}{3}}+1 \right)^{\large{\frac{1}{x^2}} }=1 x0lim(03x2 e21t2dtx32+1)x21=1

    • 这是一个 1 ∞ 1^{\infin} 1型未定式,令 α ( x ) \alpha(x) α(x)= ∫ 0 x 2 3 e 1 2 t 2 d t − x 2 3 \int_{0}^{\sqrt[3]{x^2}}{e^{\frac{1}{2}t^2}}\mathrm{d}t-x^{\frac{2}{3}} 03x2 e21t2dtx32, β \beta β= 1 x 2 \frac{1}{x^2} x21
    • A = lim ⁡ x → 0 α ( x ) β ( x ) A=\lim\limits_{x\to{0}} \alpha(x)\beta(x) A=x0limα(x)β(x)= 0 0 0,从而原式等于 e A e^{A} eA= e 0 e^{0} e0= 1 1 1

  • lim ⁡ x → 0 ( e x + e 2 x + ⋯ + e n x n ) 1 x \lim\limits_{x\to{0}}(\frac{e^{x}+e^{2x}+\cdots+e^{nx}}{n})^{\frac{1}{x}} x0lim(nex+e2x++enx)x1
    • 分析这是一个 1 ∞ 1^{\infin} 1未定式
    • g ( x ) g(x) g(x)= e x + e 2 x + ⋯ + e n x n \frac{e^{x}+e^{2x}+\cdots+e^{nx}}{n} nex+e2x++enx,则 g ( x ) g(x) g(x)= e x + e 2 x + ⋯ + e n x − n n + 1 \frac{e^{x}+e^{2x}+\cdots+e^{nx}-n}{n}+1 nex+e2x++enxn+1
    • a ( x ) a(x) a(x)= e x + e 2 x + ⋯ + e n x − n n \frac{e^{x}+e^{2x}+\cdots+e^{nx}-n}{n} nex+e2x++enxn; b ( x ) b(x) b(x)= 1 x \frac{1}{x} x1,则 A ( x ) = a ( x ) b ( x ) A(x)=a(x)b(x) A(x)=a(x)b(x)= ( e x − 1 ) + ( e 2 x − 1 ) + ⋯ + ( e n x − 1 ) n x \frac{(e^{x}-1)+(e^{2x}-1)+\cdots+(e^{nx}-1)}{nx} nx(ex1)+(e2x1)++(enx1)
    • lim ⁡ x → 0 A ( x ) \lim\limits_{x\to{0}}A(x) x0limA(x)= lim ⁡ x → 0 x + 2 x + ⋯ + n x n x \lim\limits_{x\to{0}}\frac{x+2x+\cdots+n{x}}{nx} x0limnxx+2x++nx= 1 2 n ( n + 1 ) 1 n \frac{1}{2}n(n+1)\frac{1}{n} 21n(n+1)n1= n + 1 2 \frac{n+1}{2} 2n+1
    • 所以原式= e n + 1 2 e^{\frac{n+1}{2}} e2n+1

  • lim ⁡ x → ∞ ( x n ( x + 1 ) ( x + 2 ) ⋯ ( x + n ) ) x \lim\limits_{x\to{\infin}} (\frac{x^{n}}{(x+1)(x+2)\cdots(x+n)})^{x} xlim((x+1)(x+2)(x+n)xn)x
    • 分析可知原式是 1 ∞ 1^{\infin} 1的未定式
    • f ( x ) f(x) f(x)= x n ( x + 1 ) ( x + 2 ) ⋯ ( x + n ) \frac{x^{n}}{(x+1)(x+2)\cdots(x+n)} (x+1)(x+2)(x+n)xn
    • 利用三部曲结论, ( f ( x ) − 1 + 1 ) x (f(x)-1+1)^{x} (f(x)1+1)x可以做
    • 但是这里可以使用通项思维,将原来的形式分解成形式相近的项,对这些项进行研究,或许能使得计算过程变得简单,稍加变形 f ( x ) f(x) f(x)= x ( 1 + x ) x ( x + 2 ) ⋯ x ( x + n ) \frac{x}{(1+x)}\frac{x}{(x+2)}\cdots\frac{x}{(x+n)} (1+x)x(x+2)x(x+n)x,然后 g ( x ) g(x) g(x)= [ f ( x ) ] x [f(x)]^{x} [f(x)]x= [ x ( 1 + x ) ] x [ x ( x + 2 ) ] x ⋯ [ x ( x + n ) ] x [\frac{x}{(1+x)}]^{x}[\frac{x}{(x+2)}]^{x}\cdots[\frac{x}{(x+n)}]^{x} [(1+x)x]x[(x+2)x]x[(x+n)x]x
    • 这就将问题分解为 n n n [ x x + k ] x [\frac{x}{x+k}]^{x} [x+kx]x 1 ∞ 1^{\infin} 1问题,这些处理起来就简单了(分离常数为 ( 1 − k x + k ) x (1-\frac{k}{x+k})^{x} (1x+kk)x)去处理,求 x → ∞ x\to{\infin} x的极限为 e − k e^{-k} ek
    • 更进一步,我们可以把 [ x x + k ] x [\frac{x}{x+k}]^{x} [x+kx]x= [ x + k x ] − x [\frac{x+k}{x}]^{-x} [xx+k]x= ( 1 + k x ) − x (1+\frac{k}{x})^{-x} (1+xk)x,那么也可以起到分离常数的效果,求 x → ∞ x\to{\infin} x的极限为 e − k e^{-k} ek
    • 从而原式: lim ⁡ x → ∞ g ( x ) \lim\limits_{x\to{\infin}}g(x) xlimg(x)= e − n ( n + 1 ) 2 e^{-\frac{n(n+1)}{2}} e2n(n+1)

  • lim ⁡ n → ∞ ( ( 1 + x ) 1 x e ) 1 x \lim\limits_{n\to\infin} (\frac{(1+x)^{\frac{1}{x}}}{e})^{\frac{1}{x}} nlim(e(1+x)x1)x1

  • 分析

    • 分析可知该极限使一个 1 ∞ 1^{\infin} 1型未定式
    • f ( x ) f(x) f(x)= ( 1 + x ) 1 x e \frac{(1+x)^{\frac{1}{x}}}{e} e(1+x)x1; g ( x ) g(x) g(x)= [ f ( x ) ] 1 x [f(x)]^{\frac{1}{x}} [f(x)]x1
    • 求解本题的重要要求是
      • 分析极限类型(未定式)
      • 掌握幂指函数指数化或者三部曲法
      • 掌握等价无穷小: ln ⁡ ( 1 + x ) − x ∼ − 1 2 x 2 \ln(1+x)-x\sim{-\frac{1}{2}x^2} ln(1+x)x21x2(1)
  • 方法1:

    • 直接使用三部曲法
    • f ( x ) f(x) f(x)变形为 f ( x ) f(x) f(x)= 1 + ( 1 + x ) 1 x − e e 1+\frac{(1+x)^{\frac{1}{x}}-e}{e} 1+e(1+x)x1e; a ( x ) = ( 1 + x ) 1 x − e e a(x)=\frac{(1+x)^{\frac{1}{x}}-e}{e} a(x)=e(1+x)x1e; b ( x ) = 1 x b(x)=\frac{1}{x} b(x)=x1
    • 从而 c ( x ) c(x) c(x)= ( 1 + x ) 1 x − e e ⋅ 1 x \frac{(1+x)^{\frac{1}{x}}-e}{e}\cdot{\frac{1}{x}} e(1+x)x1ex1;
      • ( e ( 1 x ln ⁡ ( 1 + x ) ) − e ({e^{(\frac{1}{x}\ln(1+x)})-e} (e(x1ln(1+x))e= e ξ ( 1 x ln ⁡ ( 1 + x ) − 1 ) e^{\xi}(\frac{1}{x}\ln(1+x)-1) eξ(x1ln(1+x)1); ξ ∈ ( 1 x ln ⁡ ( 1 + x ) , 1 ) \xi\in(\frac{1}{x}\ln(1+x),1) ξ(x1ln(1+x),1)
      • x → 0 x\to{0} x0时, 1 x ln ⁡ ( 1 + x ) → 1 \frac{1}{x}\ln(1+x)\to{1} x1ln(1+x)1,从而由夹逼准则 ξ → 1 \xi\to{1} ξ1,即 e ξ → e e^{\xi}\to{e} eξe
      • lim ⁡ x → 0 c ( x ) \lim\limits_{x\to{0}}c(x) x0limc(x)= lim ⁡ x → 0 e ξ ( 1 x ln ⁡ ( 1 + x ) − 1 ) e x \lim\limits_{x\to{0}}\frac{e^{\xi}(\frac{1}{x}\ln(1+x)-1)}{ex} x0limexeξ(x1ln(1+x)1)= lim ⁡ x → 0 ( 1 x ln ⁡ ( 1 + x ) − 1 ) x \lim\limits_{x\to{0}}\frac{(\frac{1}{x}\ln(1+x)-1)}{x} x0limx(x1ln(1+x)1)= lim ⁡ x → 0 ( ln ⁡ ( 1 + x ) − x ) x 2 \lim\limits_{x\to{0}}\frac{(\ln(1+x)-x)}{x^2} x0limx2(ln(1+x)x)
      • 再根据等价无穷小(1),替换: lim ⁡ x → 0 c ( x ) \lim\limits_{x\to{0}}c(x) x0limc(x)= lim ⁡ x → 0 − 1 2 x 2 x 2 \lim\limits_{x\to{0}}\frac{-\frac{1}{2}x^2}{x^2} x0limx221x2= − 1 2 -\frac{1}{2} 21
    • 原式= e − 1 2 e^{-\frac{1}{2}} e21
  • 方法2:

    • 使用幂指型化为指数型的手法变形(复合函数求导法)
    • f ( x ) f(x) f(x)= e 1 x ln ⁡ ( 1 + x ) e \frac{e^{\frac{1}{x}\ln{(1+x)}}}{e} eex1ln(1+x),从而 g ( x ) g(x) g(x)= e 1 x 2 ln ⁡ ( 1 + x ) e 1 x \huge\frac{e^{\frac{1}{x^2}\ln{(1+x)}}}{e^{\frac{1}{x}}} ex1ex21ln(1+x)= e [ 1 x 2 ln ⁡ ( 1 + x ) − 1 x ] \huge e^{[{\frac{1}{x^2}\ln{(1+x)}}-\frac{1}{x}]} e[x21ln(1+x)x1]
      • lim ⁡ x → 0 1 x 2 [ ln ⁡ ( 1 + x ) − x ] \lim\limits_{x\to{0}} {\frac{1}{x^2}[\ln{(1+x)}}-x] x0limx21[ln(1+x)x]= lim ⁡ x → 0 − 1 2 x 2 x 2 \lim\limits_{x\to{0}}- \frac{\frac{1}{2}x^2}{x^2} x0limx221x2= − 1 2 -\frac{1}{2} 21
    • lim ⁡ x → 0 g ( x ) \lim\limits_{x\to{0}}g(x) x0limg(x)= e − 1 2 e^{-\frac{1}{2}} e21

补充:极限含参形式

  • lim ⁡ n → ∞ ( 1 + 1 n ) n 2 \lim\limits_{n\to\infin}(1+\frac{1}{n})^{n^2} nlim(1+n1)n2,也是一个 1 ∞ 1^{\infin} 1的未定式
  • 利用上述结论,得 A = lim ⁡ 1 n n 2 A=\lim{\frac{1}{n}n^2} A=limn1n2= n n n, lim ⁡ n → ∞ ( 1 + 1 n ) n 2 \lim\limits_{n\to\infin}(1+\frac{1}{n})^{n^2} nlim(1+n1)n2= e A e^{A} eA= e n e^{n} en,由于 n → ∞ n\to{\infin} n所以 e n → ∞ e^{n}\to\infin en,所以极限不存在

http://www.kler.cn/a/159740.html

相关文章:

  • 口令攻击和钓鱼攻击
  • 密钥轮换时,老数据该如何处理
  • 前端项目搭建和基础配置
  • PCL K4PCS算法实现点云粗配准【2025最新版】
  • C语言编程笔记:文件处理的艺术
  • 【three.js】纹理贴图
  • 【探索Linux】—— 强大的命令行工具 P.20(多线程 | 线程互斥 | 互斥锁 | 死锁 | 资源饥饿)
  • 【教程】Conda更换镜像源安装pytorch
  • Git篇如何搭建自己的git仓库
  • 前端知识笔记(二十五)———JS中的异步编程与Promise
  • 如何给自己的网站加密
  • C++大小写字母转换
  • 【PID学习笔记 6 】控制系统的性能指标之二
  • Zookeeper 安装与部署
  • Java 中最常用的设计模式之一,工厂模式模式的写法,
  • 不同场景下如何构建高品质的SD-WAN网络?
  • 【libcurl库】安装及其编程访问百度首页(一)
  • threejs WebGLRenderer 像素比对画布大小的影响
  • 如何查看linux块大小
  • 基于Spring,SpringMVC,MyBatis的校园二手交易网站
  • 【泛型-胡乱砍】
  • php5和php7有什么区别
  • 用友U8 Cloud SQL注入漏洞复现
  • Web(7)内网渗透
  • Matlab进阶绘图第35期—双特征渲染三维散点图
  • 前端:HTML鼠标样式及其对应的CSS属性值