当前位置: 首页 > article >正文

分析阿里巴巴的微服务依赖图和性能

论文对阿里巴巴集群中部署的大规模微服务进行了全面的研究。他们分析了 7 天内 20,000 多个微服务的行为,并根据收集的 100 亿条调用跟踪来分析它们的特征。该论文获得SOCC 2021最佳论文奖。

他们发现:

  • 微服务图在运行时是动态的

  • 大多数图形像树一样分散生长

  • 调用图的大小遵循重尾分布

根据他们的发现,他们提供了一些有关提高微服务运行时性能的实用技巧。他们还开发了一个随机模型来模拟微服务调用图依赖关系,并表明它近似于他们收集的数据集(可在https://github.com/alibaba/clusterdata获取)。

一个微服务运行在多个容器上。对前端微服务的调用会触发对其他微服务的调用,依此类推。在生成的调用图中,每条边将上游微服务 (UM) 连接到它调用的下游微服务 (DM)。呼叫的响应时间 (RT) 是 UM 呼叫其 DM 到收到响应之间的时间。

阿里巴巴集群使用Kubernetes来管理裸机。在线服务(例如微服务)和离线批处理作业共存于同一个裸机节点中,以提高资源利用率。有状态服务(即数据库和Memcached)部署在专用集群中。

微服务调用图的大小遵循重尾分布。大约 10% 的调用图由 40 多个微服务阶段组成。最大的调用图甚至可以包含数百到数千个微服务。对于包含超过 40 个微服务的调用图,其微服务中大约 50% 是 Memcached(MC)。

发现:

  • 调用图变得更深,查询的缓存未命中率迅速增加。当数据在缓存中未命中时,查询将发送到数据库服务。
  • 超过10%的微服务对的乘积>=5,这意味着阿里巴巴集群中很多微服务对具有很强的耦合依赖关系。
  • 微服务调用率与 CPU 利用率和 Java 年轻代垃圾回收 (Young GC) 高度相关,但与内存利用率无关。这意味着与内存利用率相比,CPU 利用率和 Young GC 是微服务容器资源压力更好的指标。阿里巴巴微服务轨迹中大多数容器的内存利用率在运行时几乎稳定(方差小于 10%)。
  • 由于主机 CPU 利用率较高,响应时间 (RT) 可能会大大缩短。当主机CPU利用率超过40%(或80%)时,微服务的RT平均下降20%(或30%)以上。
  • 这些结果表明,大多数在线微服务对 CPU 干扰很敏感,强烈需要更高效的资源调度器,能够很好地平衡不同主机之间的 CPU 利用率。
  • 跟踪显示,每分钟跨主机的 CPU 利用率差异可能高达 20%,这意味着有机会更好地平衡跨主机的批处理工作负载。

https://www.jdon.com/70550.html


http://www.kler.cn/a/163169.html

相关文章:

  • 基于TI AM62A+FPGA实现FPDLINK III车载摄像头解决方案
  • 【C++】 C++游戏设计---五子棋小游戏
  • 微服务架构面试内容整理-消息驱动-RocketMQ
  • C字符串 | 字符串处理函数 | 使用 | 原理 | 实现
  • vue2项目启用tailwindcss - 开启class=“w-[190px] mr-[20px]“ - 修复tailwindcss无效的问题
  • java双向链表解析实现双向链表的创建含代码
  • 生产上线需要注意的安全漏洞
  • 【优选算法系列】【专题二滑动窗口】第四节.30. 串联所有单词的子串和76. 最小覆盖子串
  • 详解Keras3.0 Models API: Model class
  • Linux gtest单元测试
  • 基于Java医院挂号管理系统
  • sql2005日志文件过大如何清理
  • C/C++,优化算法——双离子推销员问题(Bitonic Travelling Salesman Problem)的计算方法与源代码
  • 二分查找|前缀和|滑动窗口|2302:统计得分小于 K 的子数组数目
  • linux常用命令-pip命令详解(超详细)
  • 判断css文字发生了截断,增加悬浮提示
  • 一. 初识数据结构和算法
  • StoneDB-8.0-V2.2.0 企业版正式发布!性能优化,稳定性提升,持续公测中!
  • 十七、FreeRTOS之FreeRTOS事件标志组
  • 麒麟系统进入救援模式或者是crtl D界面排查方法
  • Linux下通过find找文件---通过修改时间查找(-mtime)
  • 网络工程师【目录】
  • Python 潮流周刊#29:Rust 会比 Python 慢?!
  • 初识人工智能,一文读懂人工智能概论(1)
  • win10 笔记本卡顿优化
  • 二叉树的遍历之迭代遍历