容器适配器---deque和STL ---stack queue priority_queue的模拟实现 C++
目录
一、容器适配器
deque原理
deque的缺陷
deque的优势
二、stack的模拟实现
三、queue的模拟实现
四、优先级队列的模拟实现
一、容器适配器
适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。
stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和queue只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque。
deque原理
deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
但是deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组。
deque的缺陷
与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构
deque的优势
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。
结合了deque的优点,而完美的避开了其缺陷。
dqque结论:
1.头尾的插入删除非常合适,相比vector和list而言,很适合去做stack和queue的默认适配容器
2.中间插入删除多用list
3.随机访问多用vector
二、stack的模拟实现
用deque做适配器
template<class T, class container=deque<T>> //一般情况下默认容器为deque适配 //queue也是一样 //deque优点:头尾插删随机访问都行; //缺陷:operator[]计算稍显复杂大量使用性能下降 //中间插入删除效率不高 //底层角度迭代器会很复杂
template<class T, class container=deque<T>>class stack {
public:
void push(const T& x)
{
_con.push_back(x);
}
void pop()
{
_con.pop_back();
}
T& top()
{
return _con.back();
}
const T& top() const
{
return _con.back();
}
bool empty() const
{
return _con.empty();
}
size_t size() const
{
return _con.size();
}
private:
container _con;
//vector<T> _con;
};
三、queue的模拟实现
与stack一样,采用deque做适配器
template<class T, class container = deque<T>>
//适配器不能用vector因为不支持头插删
class queue {
public:
void push(const T& x)
{
_con.push_back(x);
}
void pop()
{
_con.pop_front();
}
T& back()
{
return _con.back();
}
T& front()
{
return _con.front();
}
const T& back() const
{
return _con.back();
}
const T& front() const
{
return _con.front();
}
bool empty() const
{
return _con.empty();
}
size_t size() const
{
return _con.size();
}
private:
container _con;
};
四、优先级队列的模拟实现
template<class T, class container = vector<T>>
class priority_queue {
public :
//类似于堆
priority_queue()
{}
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last)
{
while (first != last)
{
_con.push_back(*first);
++first;
}
//建堆
for (int i = (_con.size() - 1 - 1) / 2; i >= 0; i--)
{
adjust_down(i);
}
}
void adjust_up(size_t child)
{
//向上调//O(lgN)
size_t parent = (child - 1) / 2;
while (child>0)
{
if (_con[child] > _con[parent])
{
std::swap(_con[child], _con[parent]);
child = parent;
parent = (child - 1) / 2;
}
else
break;
}
}
void push(const T& x)
{//向上调整
_con.push_back(x);
adjust_up(_con.size() - 1);
}
void adjust_down(size_t parent)
{
//向下调整
size_t child = parent * 2 + 1;
while (child < _con.size())
{
if (child + 1 < _con.size() && _con[child + 1] > _con[child])
{
child++;
}
if (_con[child] > _con[parent])
{
std::swap(_con[child], _con[parent]);
parent = child;
child = parent * 2 + 1;
}
else
break;
}
}
void pop()
{
//向下调整
std::swap(_con[0], _con[_con.size() - 1]);
_con.pop_back();
adjust_down(0);
}
const T& top()
{
return _con[0];
}
bool empty()
{
return _con.empty();
}
size_t size()
{
return _con.size();
}
private:
vector<T> _con;
};