当前位置: 首页 > article >正文

随机森林超参数的网格优化(机器学习的精华--调参)

随机森林超参数的网格优化(机器学习的精华–调参)

随机森林各个参数对算法的影响

影响力参数
⭐⭐⭐⭐⭐
几乎总是具有巨大影响力
n_estimators(整体学习能力)
max_depth(粗剪枝)
max_features(随机性)
⭐⭐⭐⭐
大部分时候具有影响力
max_samples(随机性)
class_weight(样本均衡)
⭐⭐
可能有大影响力
大部分时候影响力不明显
min_samples_split(精剪枝)
min_impurity_decrease(精剪枝)
max_leaf_nodes(精剪枝)
criterion(分枝敏感度)

当数据量足够大时,几乎无影响
random_state
ccp_alpha(结构风险)

探索的第一步(学习曲线)

先看看n_estimators的学习曲线(当然我们也可以看一下其他参数的学习曲线)

#参数潜在取值,由于现在我们只调整一个参数,因此参数的范围可以取大一些、取值也可以更密集
Option = [1,*range(5,101,5)]

#生成保存模型结果的arrays
trainRMSE = np.array([])
testRMSE = np.array([])
trainSTD = np.array([])
testSTD = np.array([])

#在参数取值中进行循环
for n_estimators in Option:
    
    #按照当下的参数,实例化模型
    reg_f = RFR(n_estimators=n_estimators,random_state=83)
    
    #实例化交叉验证方式,输出交叉验证结果
    cv = KFold(n_splits=5,shuffle=True,random_state=83)
    result_f = cross_validate(reg_f,X,y,cv=cv,scoring="neg_mean_squared_error"
                              ,return_train_score=True
                              ,n_jobs=-1)
    
    #根据输出的MSE进行RMSE计算
    train = abs(result_f["train_score"])**0.5
    test = abs(result_f["test_score"])**0.5
    
    #将本次交叉验证中RMSE的均值、标准差添加到arrays中进行保存
    trainRMSE = np.append(trainRMSE,train.mean()) #效果越好
    testRMSE = np.append(testRMSE,test.mean())
    trainSTD = np.append(trainSTD,train.std()) #模型越稳定
    testSTD = np.append(testSTD,test.std())

定义画图函数

def plotCVresult(Option,trainRMSE,testRMSE,trainSTD,testSTD):
    #一次交叉验证下,RMSE的均值与std的绘图
    xaxis = Option
    plt.figure(figsize=(8,6),dpi=80)

    #RMSE
    plt.plot(xaxis,trainRMSE,color="k",label = "RandomForestTrain")
    plt.plot(xaxis,testRMSE,color="red",label = "RandomForestTest")

    #标准差 - 围绕在RMSE旁形成一个区间
    plt.plot(xaxis,trainRMSE+trainSTD,color="k",linestyle="dotted")
    plt.plot(xaxis,trainRMSE-trainSTD,color="k",linestyle="dotted")
    plt.plot(xaxis,testRMSE+testSTD,color="red",linestyle="dotted")
    plt.plot(xaxis,testRMSE-testSTD,color="red",linestyle="dotted")
    plt.xticks([*xaxis])
    plt.legend(loc=1)
    plt.show()
    
plotCVresult(Option,trainRMSE,testRMSE,trainSTD,testSTD)

在这里插入图片描述

当绘制学习曲线时,我们可以很容易找到泛化误差开始上升、或转变为平稳趋势的转折点。因此我们可以选择转折点或转折点附近的n_estimators取值,例如20。然而,n_estimators会受到其他参数的影响,例如:

  • 单棵决策树的结构更简单时(依赖剪枝时),可能需要更多的树
  • 单棵决策树训练的数据更简单时(依赖随机性时),可能需要更多的树

因此n_estimators的参数空间可以被确定为range(20,100,5),如果你比较保守,甚至可以确认为是range(15,25,5)。

探索第二步(随机森林中的每一棵决策树)

属性.estimators_,查看森林中所有的树

参数参数含义对应属性属性含义
n_estimators树的数量reg.estimators_森林中所有树对象
max_depth允许的最大深度.tree_.max_depth0号树实际的深度
max_leaf_nodes允许的最大
叶子节点量
.tree_.node_count0号树实际的总节点量
min_sample_split分枝所需最小
样本量
.tree_.n_node_samples0号树每片叶子上实际的样本量
min_weight_fraction_leaf分枝所需最小
样本权重
tree_.weighted_n_node_samples0号树每片叶子上实际的样本权重
min_impurity_decrease分枝所需最小
不纯度下降量
.tree_.impurity
.tree_.threshold
0号树每片叶子上的实际不纯度
0号树每个节点分枝后不纯度下降量

可以通过对上述属性的调用查看当前模型每一棵树的各个属性,对我们对于参数范围的选择给予帮助。

正戏开始(网格搜索)

import numpy as np
import pandas as pd
import sklearn
import matplotlib as mlp
import matplotlib.pyplot as plt
import time #计时模块time
from sklearn.ensemble import RandomForestRegressor as RFR
from sklearn.model_selection import cross_validate, KFold, GridSearchCV
# 定义RMSE函数
def RMSE(cvresult,key):
    return (abs(cvresult[key])**0.5).mean()
#导入波士顿房价数据
data = pd.read_csv(r"D:\Pythonwork\datasets\House Price\train_encode.csv",index_col=0)
#查看数据
data.head()
X = data.iloc[:,:-1]
y = data.iloc[:,-1]

在这里插入图片描述

Step 1.建立benchmark

# 定义回归器
reg = RFR(random_state=83)
# 进行5折交叉验证
cv = KFold(n_splits=5,shuffle=True,random_state=83)

result_pre_adjusted = cross_validate(reg,X,y,cv=cv,scoring="neg_mean_squared_error"
                          ,return_train_score=True
                          ,verbose=True
                          ,n_jobs=-1)
#分别查看训练集和测试集在调参之前的RMSE
RMSE(result_pre_adjusted,"train_score")
RMSE(result_pre_adjusted,"test_score")

结果分别是
11177.272008319653
30571.26665524217

Step 2.创建参数空间

param_grid_simple = {"criterion": ["squared_error","poisson"]
                     , 'n_estimators': [*range(20,100,5)]
                     , 'max_depth': [*range(10,25,2)]
                     , "max_features": ["log2","sqrt",16,32,64,"auto"]
                     , "min_impurity_decrease": [*np.arange(0,5,10)]
                    }

Step 3.实例化用于搜索的评估器、交叉验证评估器与网格搜索评估器

#n_jobs=4/8,verbose=True
reg = RFR(random_state=1412,verbose=True,n_jobs=-1)
cv = KFold(n_splits=5,shuffle=True,random_state=83)
search = GridSearchCV(estimator=reg
                     ,param_grid=param_grid_simple
                     ,scoring = "neg_mean_squared_error"
                     ,verbose = True
                     ,cv = cv
                     ,n_jobs=-1)

Step 4.训练网格搜索评估器

#=====【TIME WARNING: 15mins】=====#   当然博主的电脑比较慢
start = time.time()
search.fit(X,y)
print(time.time() - start)

Step 5.查看结果

search.best_estimator_

# 直接使用最优参数进行建模
ad_reg = RFR(n_estimators=85, max_depth=23, max_features=16, random_state=83)

cv = KFold(n_splits=5,shuffle=True,random_state=83)
result_post_adjusted = cross_validate(ad_reg,X,y,cv=cv,scoring="neg_mean_squared_error"
                          ,return_train_score=True
                          ,verbose=True
                          ,n_jobs=-1)
#查看调参后的结果
RMSE(result_post_adjusted,"train_score")
RMSE(result_post_adjusted,"test_score")

得出结果
11000.81099038192
28572.070208366855

调参前后对比

#默认值下随机森林的RMSE
xaxis = range(1,6)
plt.figure(figsize=(8,6),dpi=80)
#RMSE
plt.plot(xaxis,abs(result_pre_adjusted["train_score"])**0.5,color="green",label = "RF_pre_ad_Train")
plt.plot(xaxis,abs(result_pre_adjusted["test_score"])**0.5,color="green",linestyle="--",label = "RF_pre_ad_Test")
plt.plot(xaxis,abs(result_post_adjusted["train_score"])**0.5,color="orange",label = "RF_post_ad_Train")
plt.plot(xaxis,abs(result_post_adjusted["test_score"])**0.5,color="orange",linestyle="--",label = "RF_post_ad_Test")
plt.xticks([1,2,3,4,5])
plt.xlabel("CVcounts",fontsize=16)
plt.ylabel("RMSE",fontsize=16)
plt.legend()
plt.show()

在这里插入图片描述
不难发现,网格搜索之后的模型过拟合程度减轻,且在训练集与测试集上的结果都有提高,可以说从根本上提升了模型的基础能力。我们还可以根据网格的结果继续尝试进行其他调整,来进一步降低模型在测试集上的RMSE。


http://www.kler.cn/a/228305.html

相关文章:

  • jenkins-k8s pod方式动态生成slave节点
  • 困境如雾路难寻,心若清明步自轻---2024年创作回顾
  • stm32单片机个人学习笔记14(USART串口数据包)
  • 从对等通信到万维网:通信模型变迁与拥塞求解
  • 计算机组成原理(计算机系统3)--实验八:处理器结构拓展实验
  • 大华大数据开发面试题及参考答案
  • Linux定时器和时间管理
  • arcpy高德爬取路况信息数据json转shp
  • 关于如何将Excel转成Word,可能有一些你想知道的技巧
  • Linux内存管理:(十二)Linux 5.0内核新增的反碎片优化
  • STM32单片机的基本原理与应用(六)
  • 阿里巴巴 Java 开发手册
  • Leetcode 3031. Minimum Time to Revert Word to Initial State II
  • DBA的节前紧急任务:一份全面的数据库自救指南
  • kubeadm部署k8s集群
  • Android BitmapShader setLocalMatrix缩放Bitmap高度重新onMeasure,Kotlin
  • 【教程】微服务使用Feign接口进行远程调用的步骤
  • 【分布式】雪花算法学习笔记
  • 从零开始 TensorRT(4)命令行工具篇:trtexec 基本功能
  • react和antd学习笔记
  • STM32--揭秘中断(简易土货版)
  • Qt 范例阅读: QStateMachine状态机框架 和 SCXML 引擎简单记录(方便后续有需求能想到这两个东西)
  • k8s学习-数据管理
  • Jmeter 01 -概述线程组
  • windows下docker的使用
  • STM32—系统定时器