当前位置: 首页 > article >正文

页面单跳转换率统计案例分析

需求说明

页面单跳转化率

        计算页面单跳转化率,什么是页面单跳转换率,比如一个用户在一次 Session 过程中访问的页面路径 3,5,7,9,10,21,那么页面 3 跳到页面 5 叫一次单跳,7-9 也叫一次单跳, 那么单跳转化率就是要统计页面点击的概率。 比如:计算 3-5 的单跳转化率,先获取符合条件的 Session 对于页面 3 的访问次数(PV) 为 A,然后获取符合条件的 Session 中访问了页面 3 又紧接着访问了页面 5 的次数为 B, 那么 B/A 就是 3-5 的页面单跳转化率。

 功能实现

        数据准备:

 // TODO : Top10热门品类
      val sparkConf = new SparkConf().setMaster("local").setAppName("HotCategoryTop10Analysis")
      val sc = new SparkContext(sparkConf)

      val actionRDD = sc.textFile("data/user_visit_action.txt")

        data/user_visit_action.txt :

         定义一个用户访问动作类:

case class UserVisitAction(
     date: String,//用户点击行为的日期
     user_id: Long,//用户的 ID
     session_id: String,//session 的 ID
     page_id: Long,//某个页面的 ID
     action_time: String,//动作的时间点
     search_keyword: String,//用户搜索的关键词
     click_category_id: Long,//某一个商品品类的 ID
     click_product_id: Long,//某一个商品的 ID
     order_category_ids: String,//一次订单中所有品类的 ID 集合
     order_product_ids: String,//一次订单中所有商品的 ID 集合
     pay_category_ids: String,//一次支付中所有品类的 ID 集合
     pay_product_ids: String,//一次支付中所有商品的 ID 集合
     city_id: Long //城市 id
  )

        然后将每行数据封装成UserVisitAction对象,运用map转换算子:

val actionDateRDD = actionRDD.map( //每行数据封装成UserVisitAction对象
        action => {
          val datas = action.split("_")
          UserVisitAction(
            datas(0),
            datas(1).toLong,
            datas(2),
            datas(3).toLong,
            datas(4),
            datas(5),
            datas(6).toLong,
            datas(7).toLong,
            datas(8),
            datas(9),
            datas(10),
            datas(11),
            datas(12).toLong
          )
        }
      )

        由于统计所有的页面跳转数据量过于庞大,这里就指定一下:

//TODO 对指定页面连续跳转进行统计
      //1-2,2-3,3-4,4-5,5-6,6-7
      val ids = List[Long](1, 2, 3, 4, 5, 6, 7)
      val okflowIds = ids.zip(ids.tail) //List((1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7))

        接下来统计每个页面的被查看的次数,也就是分母,actionDateRDD里面封装的是一个个UserVisitAction对象,运用filter转换算子过滤出List所包含的页面,再用map转换算子将一个UserVisitAction对象转换成(action.page_id, 1L),便于后续的reduceByKey作统计,而toMap方法是将RDD中的数据转换为一个Map对象,需要将所有的数据收集到Driver端,并在Driver端构建Map对象。因此,需要使用collect方法将RDD中的数据拉取到Driver端的内存中,以便在Driver端进行toMap操作。

//TODO 计算分母(计算每个页面的被查看的次数)
      val pageidToCountMap = actionDateRDD.filter( //过滤出List里面的页面
          action => {
            ids.contains(action.page_id)
          }
        ).map(
          action => {
            (action.page_id, 1L)
          }
      ).reduceByKey(_ + _).collect().toMap
      println("pageidToCountMap: ")
      pageidToCountMap.foreach(println)

        接下来统计分子,首先根据session_Id进行分组:

val sessionRDD = actionDateRDD.groupBy(_.session_id)

        再将UserVisitAction对象根据访问时间action_time排序,然后用map算子只保留对象的page_id,再用zip拉链:

 val mvRDD = sessionRDD.mapValues(
        iter => {
          val sortList = iter.toList.sortBy(_.action_time)
          val flowIds = sortList.map(_.page_id)
          val pageflowIds = flowIds.zip(flowIds.tail)

将不满足条件的页面跳转进行过滤:

val mvRDD = sessionRDD.mapValues(
        iter => {
          val sortList = iter.toList.sortBy(_.action_time)
          val flowIds = sortList.map(_.page_id)
          val pageflowIds = flowIds.zip(flowIds.tail)

          //将不合法的页面跳转进行过滤
          pageflowIds.filter(
            t=>{
              okflowIds.contains(t)
            }
          ).map(
            t => {
              (t, 1)
            }
          )
        }
      )

 mvRDD大致格式长这样:

        sessionid对于我们来说没有用,只需计算后面的页面跳转内容即可,用map算子处理,再用flatmap扁平化处理,便于后续的reduceByKey聚合:

 //((1,2),1)
 val flatRDD = mvRDD.map(_._2).flatMap(list => list)
 //((1,2),sum)
 val dataRDD = flatRDD.reduceByKey(_ + _)

最终计算:

//计算单跳转换率 分子/分母
       dataRDD.foreach{
         case ((page1,page2),sum)=>{
           val cnt = pageidToCountMap.getOrElse(page1, 0L)
           println(s"页面${page1}到页面${page2}单跳转换率为: "+(sum.toDouble/cnt))
         }
       }


http://www.kler.cn/a/229719.html

相关文章:

  • 搭建prometheus+grafana监控系统抓取Linux主机系统资源数据
  • 6.business english--updates
  • 一分钟学会文心一言API如何接入,文心一言API接入教程
  • 相加交互效应函数发布—适用于逻辑回归、cox回归、glmm模型、gee模型
  • Spring boot集成各种数据源操作数据库
  • 二叉树经典题题解(超全题目)(力扣)
  • 「连载」边缘计算(十四)02-02:边缘部分源码(源码分析篇)
  • 第7节、双电机直线运动【51单片机+L298N步进电机系列教程】
  • okhttp 的 拦截器
  • ts总结2、any 类型,unknown 类型,never 类型(编译选项noImplicitAny)
  • pnpm + vite 从外网迁移到内网环境开发
  • 【推荐算法】userid是否建模
  • Java设计模式大全:23种常见的设计模式详解(一)
  • 【知识整理】一文理解系统服务高可用
  • Express框架介绍—node.js
  • 假期day4,链表增加与删除(2024/2/5)
  • 1、深度学习环境配置相关下载地址整理(cuda、cudnn、torch、miniconda、pycharm、torchvision等)
  • Unity之协同程序
  • 如何在HA智能家居系统中添加HACS集成并实现异地控制家中苹果与小米设备
  • Android Compose 一个音视频APP——Magic Music Player
  • [Linux] 网络编程套接字
  • ChatGPT Plus如何升级?信用卡付款失败怎么办?如何使用信用卡升级 ChatGPT Plus?
  • 算法学习——LeetCode力扣哈希表篇2
  • MIT_线性代数笔记:第 34 讲 总复习