当前位置: 首页 > article >正文

运维高级篇-分库分表(拆分策略详解)

分库分表

介绍

问题分析

 

随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行数据存 储,存在以下性能瓶颈:

  • IO瓶颈:热点数据太多,数据库缓存不足,产生大量磁盘IO,效率较低。 请求数据太多,带宽 不够,网络IO瓶颈。

  • CPU瓶颈:排序、分组、连接查询、聚合统计等SQL会耗费大量的CPU资源,请求数太多,CPU出 现瓶颈。

 

分库分表的中心思想都是将数据分散存储,使得单一数据库/表的数据量变小来缓解单一数据库的性能 问题,从而达到提升数据库性能的目的。

拆分策略

分库分表的形式,主要是两种:垂直拆分和水平拆分。而拆分的粒度,一般又分为分库和分表,所以组 成的拆分策略最终如下:

 

垂直拆分

垂直分库

 

垂直分库:以表为依据,根据业务将不同表拆分到不同库中。

特点:

  • 每个库的表结构都不一样。

  • 每个库的数据也不一样。

  • 所有库的并集是全量数据。

垂直分表

 

垂直分表:以字段为依据,根据字段属性将不同字段拆分到不同表中。

特点:

  • 每个表的结构都不一样。

  • 每个表的数据也不一样,一般通过一列(主键/外键)关联。

  • 所有表的并集是全量数据。

水平拆分

水平分库

 

水平分库:以字段为依据,按照一定策略,将一个库的数据拆分到多个库中。

特点:

  • 每个库的表结构都一样。

  • 每个库的数据都不一样。

  • 所有库的并集是全量数据。

水平分表

 

水平分表:以字段为依据,按照一定策略,将一个表的数据拆分到多个表中。

特点:

  • 每个表的表结构都一样。

  • 每个表的数据都不一样。

  • 所有表的并集是全量数据。


http://www.kler.cn/a/232173.html

相关文章:

  • Scala语言的循环实现
  • 【useCallback Hook】在多次渲染中缓存组件中的函数,避免重复创建函数
  • 通过内核模块按fd强制tcp的quickack方法
  • 服务器一次性部署One API + ChatGPT-Next-Web
  • 云计算与物联网技术的融合应用(在工业、农业、家居、医疗、环境、城市等整理较全)
  • 什么宠物最好养?
  • 假期作业 7
  • 【嵌入式-传感器】从旋转编码器到学会看懂方波
  • 《动手学深度学习(PyTorch版)》笔记7.6
  • 复制和粘贴文本时剥离格式的5种方法(MacWindows)
  • c# Config 配置文件帮助类
  • 3.2 Verilog 时延
  • 一个基于 .NET 7 + Vue.js 的前后端分离的通用后台管理系统框架 - DncZeus
  • [Java][算法 哈希]Day 01---LeetCode 热题 100---01~03
  • 基于华为云欧拉操作系统(HCE OS)容器化部署传统应用(Redis+Postgresql+Git+SpringBoot+Nginx)
  • 【Network Management】AUTOSAR架构下CanNm User Data详解
  • echarts使用之地图(五)
  • 【几分钟】快速熟悉torch.save()、torch.load()、torch.nn.Module.load_state_dict()
  • ONLYOFFICE文档8.0新功能浅探
  • 软件测试学习笔记-测试用例的编写
  • 项目学习记录
  • MGIE官网体验入口 苹果多模态大语言模型AI图像编辑工具在线使用地址
  • 【Google Bard】免费生成图像——功能和使用方法详解
  • 基于Vue的移动端UI框架整理
  • OpenAI使用的海量数据集介绍
  • Redis事务和Redis管道