SegmentAnything官网demo使用vue+python实现
一、效果&准备工作
1.效果
没啥好说的,低质量复刻SAM官网 https://segment-anything.com/
需要提一点:所有生成embedding和mask的操作都是python后端做的,计算mask不是onnxruntime-web实现的,前端只负责了把rle编码的mask解码后画到canvas上,会有几十毫秒的网络传输延迟。我不会react和typescript,官网F12里的源代码太难懂了,生成的svg总是与期望的不一样
主页
鼠标移动动态分割(Hover)
throttle了一下,修改代码里的throttle delay,反应更快些,我觉得没必要已经够了,设置的150ms
点选前景背景(Click)
蓝色前景,红色背景,对应clickType分别为1和0
分割(Cut out object)
同官网,分割出该区域需要的最小矩形框部分
分割所有(Everything)
随便做了下,实在做不出官网的效果,可能模型也有问题 ,我用的vit_b,懒得试了,这功能对我来说没卵用
2.准备工作
安装依赖
前端使用了Vue3+ElementPlus(https://element-plus.org/zh-CN/#/zh-CN)+axios+lz-string,npm安装一下。
后端是fastapi(https://fastapi.tiangolo.com/),FastAPI 依赖 Python 3.8 及更高版本。
安装 FastAPI
pip install fastapi
另外我们还需要一个 ASGI 服务器,生产环境可以使用 Uvicorn 或者 Hypercorn:
pip install "uvicorn[standard]"
要用的js文件
@/util/request.js
import axios from "axios";
import { ElMessage } from "element-plus";
axios.interceptors.request.use(
config => {
return config;
},
error => {
return Promise.reject(error);
}
);
axios.interceptors.response.use(
response => {
if (response.data.success != null && !response.data.success) {
return Promise.reject(response.data)
}
return response.data;
},
error => {
console.log('error: ', error)
ElMessage.error(' ');
return Promise.reject(error);
}
);
export default axios;
然后在main.js中绑定
import axios from './util/request.js'
axios.defaults.baseURL = 'http://localhost:9000'
axios.defaults.headers.post['Content-Type'] = 'application/x-www-form-urlencoded';
app.config.globalProperties.$http = axios
@/util/throttle.js
function throttle(func, delay) {
let timer = null; // 定时器变量
return function() {
const context = this; // 保存this指向
const args = arguments; // 保存参数列表
if (!timer) {
timer = setTimeout(() => {
func.apply(context, args); // 调用原始函数并传入上下文和参数
clearTimeout(timer); // 清除计时器
timer = null; // 重置计时器为null
}, delay);
}
};
}
export default throttle
@/util/mask_utils.js
/**
* Parses RLE from compressed string
* @param {Array<number>} input
* @returns array of integers
*/
export const rleFrString = (input) => {
let result = [];
let charIndex = 0;
while (charIndex < input.length) {
let value = 0,
k = 0,
more = 1;
while (more) {
let c = input.charCodeAt(charIndex) - 48;
value |= (c & 0x1f) << (5 * k);
more = c & 0x20;
charIndex++;
k++;
if (!more && c & 0x10) value |= -1 << (5 * k);
}
if (result.length > 2) value += result[result.length - 2];
result.push(value);
}
return result;
};
/**
* Parse RLE to mask array
* @param rows
* @param cols
* @param counts
* @returns {Uint8Array}
*/
export const decodeRleCounts = ([rows, cols], counts) => {
let arr = new Uint8Array(rows * cols)
let i = 0
let flag = 0
for (let k of counts) {
while (k-- > 0) {
arr[i++] = flag
}
flag = (flag + 1) % 2
}
return arr
};
/**
* Parse Everything mode counts array to mask array
* @param rows
* @param cols
* @param counts
* @returns {Uint8Array}
*/
export const decodeEverythingMask = ([rows, cols], counts) => {
let arr = new Uint8Array(rows * cols)
let k = 0;
for (let i = 0; i < counts.length; i += 2) {
for (let j = 0; j < counts[i]; j++) {
arr[k++] = counts[i + 1]
}
}
return arr;
};
/**
* Get globally unique color in the mask
* @param category
* @param colorMap
* @returns {*}
*/
export const getUniqueColor = (category, colorMap) => {
// 该种类没有颜色
if (!colorMap.hasOwnProperty(category)) {
// 生成唯一的颜色
while (true) {
const color = {
r: Math.floor(Math.random() * 256),
g: Math.floor(Math.random() * 256),
b: Math.floor(Math.random() * 256)
}
// 检查颜色映射中是否已存在相同的颜色
const existingColors = Object.values(colorMap);
const isDuplicateColor = existingColors.some((existingColor) => {
return color.r === existingColor.r && color.g === existingColor.g && color.b === existingColor.b;
});
// 如果不存在相同颜色,结束循环
if (!isDuplicateColor) {
colorMap[category] = color;
break
}
}
console.log("生成唯一颜色", category, colorMap[category])
return colorMap[category]
} else {
return colorMap[category]
}
}
/**
* Cut out specific area of image uncovered by mask
* @param w image's natural width
* @param h image's natural height
* @param image source image
* @param canvas mask canvas
* @param callback function to solve the image blob
*/
export const cutOutImage = ({w, h}, image, canvas, callback) => {
const resultCanvas = document.createElement('canvas'),
resultCtx = resultCanvas.getContext('2d', {willReadFrequently: true}),
originalCtx = canvas.getContext('2d', {willReadFrequently: true});
resultCanvas.width = w;
resultCanvas.height = h;
resultCtx.drawImage(image, 0, 0, w, h)
const maskDataArray = originalCtx.getImageData(0, 0, w, h).data;
const imageData = resultCtx.getImageData(0, 0, w, h);
const imageDataArray = imageData.data
// 将mask的部分去掉
for (let i = 0; i < maskDataArray.length; i += 4) {
const alpha = maskDataArray[i + 3];
if (alpha !== 0) { // 不等于0,是mask区域
imageDataArray[i + 3] = 0;
}
}
// 计算被分割出来的部分的矩形框
let minX = w;
let minY = h;
let maxX = 0;
let maxY = 0;
for (let y = 0; y < h; y++) {
for (let x = 0; x < w; x++) {
const alpha = imageDataArray[(y * w + x) * 4 + 3];
if (alpha !== 0) {
minX = Math.min(minX, x);
minY = Math.min(minY, y);
maxX = Math.max(maxX, x);
maxY = Math.max(maxY, y);
}
}
}
const width = maxX - minX + 1;
const height = maxY - minY + 1;
const startX = minX;
const startY = minY;
resultCtx.putImageData(imageData, 0, 0)
// 创建一个新的canvas来存储特定区域的图像
const croppedCanvas = document.createElement("canvas");
const croppedContext = croppedCanvas.getContext("2d");
croppedCanvas.width = width;
croppedCanvas.height = height;
// 将特定区域绘制到新canvas上
croppedContext.drawImage(resultCanvas, startX, startY, width, height, 0, 0, width, height);
croppedCanvas.toBlob(blob => {
if (callback) {
callback(blob)
}
}, "image/png");
}
/**
* Cut out specific area of image covered by target color mask
* PS: 我写的这代码有问题,比较color的时候tmd明明mask canvas中有这个颜色,
* 就是说不存在这颜色,所以不用这个函数,改成下面的了
* @param w image's natural width
* @param h image's natural height
* @param image source image
* @param canvas mask canvas
* @param color target color
* @param callback function to solve the image blob
*/
export const cutOutImageWithMaskColor = ({w, h}, image, canvas, color, callback) => {
const resultCanvas = document.createElement('canvas'),
resultCtx = resultCanvas.getContext('2d', {willReadFrequently: true}),
originalCtx = canvas.getContext('2d', {willReadFrequently: true});
resultCanvas.width = w;
resultCanvas.height = h;
resultCtx.drawImage(image, 0, 0, w, h)
const maskDataArray = originalCtx.getImageData(0, 0, w, h).data;
const imageData = resultCtx.getImageData(0, 0, w, h);
const imageDataArray = imageData.data
let find = false
// 比较mask的color和目标color
for (let i = 0; i < maskDataArray.length; i += 4) {
const r = maskDataArray[i],
g = maskDataArray[i + 1],
b = maskDataArray[i + 2];
if (r != color.r || g != color.g || b != color.b) { // 颜色与目标颜色不相同,是mask区域
// 设置alpha为0
imageDataArray[i + 3] = 0;
} else {
find = true
}
}
// 计算被分割出来的部分的矩形框
let minX = w;
let minY = h;
let maxX = 0;
let maxY = 0;
for (let y = 0; y < h; y++) {
for (let x = 0; x < w; x++) {
const alpha = imageDataArray[(y * w + x) * 4 + 3];
if (alpha !== 0) {
minX = Math.min(minX, x);
minY = Math.min(minY, y);
maxX = Math.max(maxX, x);
maxY = Math.max(maxY, y);
}
}
}
const width = maxX - minX + 1;
const height = maxY - minY + 1;
const startX = minX;
const startY = minY;
// console.log(`矩形宽度:${width}`);
// console.log(`矩形高度:${height}`);
// console.log(`起点坐标:(${startX}, ${startY})`);
resultCtx.putImageData(imageData, 0, 0)
// 创建一个新的canvas来存储特定区域的图像
const croppedCanvas = document.createElement("canvas");
const croppedContext = croppedCanvas.getContext("2d");
croppedCanvas.width = width;
croppedCanvas.height = height;
// 将特定区域绘制到新canvas上
croppedContext.drawImage(resultCanvas, startX, startY, width, height, 0, 0, width, height);
croppedCanvas.toBlob(blob => {
if (callback) {
callback(blob)
}
}, "image/png");
}
/**
* Cut out specific area whose category is target category
* @param w image's natural width
* @param h image's natural height
* @param image source image
* @param arr original mask array that stores all pixel's category
* @param category target category
* @param callback function to solve the image blob
*/
export const cutOutImageWithCategory = ({w, h}, image, arr, category, callback) => {
const resultCanvas = document.createElement('canvas'),
resultCtx = resultCanvas.getContext('2d', {willReadFrequently: true});
resultCanvas.width = w;
resultCanvas.height = h;
resultCtx.drawImage(image, 0, 0, w, h)
const imageData = resultCtx.getImageData(0, 0, w, h);
const imageDataArray = imageData.data
// 比较mask的类别和目标类别
let i = 0
for(let y = 0; y < h; y++){
for(let x = 0; x < w; x++){
if (category != arr[i++]) { // 类别不相同,是mask区域
// 设置alpha为0
imageDataArray[3 + (w * y + x) * 4] = 0;
}
}
}
// 计算被分割出来的部分的矩形框
let minX = w;
let minY = h;
let maxX = 0;
let maxY = 0;
for (let y = 0; y < h; y++) {
for (let x = 0; x < w; x++) {
const alpha = imageDataArray[(y * w + x) * 4 + 3];
if (alpha !== 0) {
minX = Math.min(minX, x);
minY = Math.min(minY, y);
maxX = Math.max(maxX, x);
maxY = Math.max(maxY, y);
}
}
}
const width = maxX - minX + 1;
const height = maxY - minY + 1;
const startX = minX;
const startY = minY;
resultCtx.putImageData(imageData, 0, 0)
// 创建一个新的canvas来存储特定区域的图像
const croppedCanvas = document.createElement("canvas");
const croppedContext = croppedCanvas.getContext("2d");
croppedCanvas.width = width;
croppedCanvas.height = height;
// 将特定区域绘制到新canvas上
croppedContext.drawImage(resultCanvas, startX, startY, width, height, 0, 0, width, height);
croppedCanvas.toBlob(blob => {
if (callback) {
callback(blob)
}
}, "image/png");
}
二、后端代码
1.SAM下载
首先从github上下载SAM的代码https://github.com/facebookresearch/segment-anything
然后下载模型文件,保存到项目根目录/checkpoints中,
default
orvit_h
: ViT-H SAM model.vit_l
: ViT-L SAM model.vit_b
: ViT-B SAM model.
2.后端代码
在项目根目录下创建main.py
main.py
import os
import time
from PIL import Image
import numpy as np
import io
import base64
from segment_anything import SamPredictor, SamAutomaticMaskGenerator, sam_model_registry
from pycocotools import mask as mask_utils
import lzstring
def init():
# your model path
checkpoint = "checkpoints/sam_vit_b_01ec64.pth"
model_type = "vit_b"
sam = sam_model_registry[model_type](checkpoint=checkpoint)
sam.to(device='cuda')
predictor = SamPredictor(sam)
mask_generator = SamAutomaticMaskGenerator(sam)
return predictor, mask_generator
predictor, mask_generator = init()
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins="*",
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
last_image = ""
last_logit = None
@app.post("/segment")
def process_image(body: dict):
global last_image, last_logit
print("start processing image", time.time())
path = body["path"]
is_first_segment = False
# 看上次分割的图片是不是该图片
if path != last_image: # 不是该图片,重新生成图像embedding
pil_image = Image.open(path)
np_image = np.array(pil_image)
predictor.set_image(np_image)
last_image = path
is_first_segment = True
print("第一次识别该图片,获取embedding")
# 获取mask
clicks = body["clicks"]
input_points = []
input_labels = []
for click in clicks:
input_points.append([click["x"], click["y"]])
input_labels.append(click["clickType"])
print("input_points:{}, input_labels:{}".format(input_points, input_labels))
input_points = np.array(input_points)
input_labels = np.array(input_labels)
masks, scores, logits = predictor.predict(
point_coords=input_points,
point_labels=input_labels,
mask_input=last_logit[None, :, :] if not is_first_segment else None,
multimask_output=is_first_segment # 第一次产生3个结果,选择最优的
)
# 设置mask_input,为下一次做准备
best = np.argmax(scores)
last_logit = logits[best, :, :]
masks = masks[best, :, :]
# print(mask_utils.encode(np.asfortranarray(masks))["counts"])
# numpy_array = np.frombuffer(mask_utils.encode(np.asfortranarray(masks))["counts"], dtype=np.uint8)
# print("Uint8Array([" + ", ".join(map(str, numpy_array)) + "])")
source_mask = mask_utils.encode(np.asfortranarray(masks))["counts"].decode("utf-8")
# print(source_mask)
lzs = lzstring.LZString()
encoded = lzs.compressToEncodedURIComponent(source_mask)
print("process finished", time.time())
return {"shape": masks.shape, "mask": encoded}
@app.get("/everything")
def segment_everything(path: str):
start_time = time.time()
print("start segment_everything", start_time)
pil_image = Image.open(path)
np_image = np.array(pil_image)
masks = mask_generator.generate(np_image)
sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True)
img = np.zeros((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1]), dtype=np.uint8)
for idx, ann in enumerate(sorted_anns, 0):
img[ann['segmentation']] = idx
#看一下mask是什么样
#plt.figure(figsize=(10,10))
#plt.imshow(img)
#plt.show()
# 压缩数组
result = my_compress(img)
end_time = time.time()
print("finished segment_everything", end_time)
print("time cost", end_time - start_time)
return {"shape": img.shape, "mask": result}
@app.get('/automatic_masks')
def automatic_masks(path: str):
pil_image = Image.open(path)
np_image = np.array(pil_image)
mask = mask_generator.generate(np_image)
sorted_anns = sorted(mask, key=(lambda x: x['area']), reverse=True)
lzs = lzstring.LZString()
res = []
for ann in sorted_anns:
m = ann['segmentation']
source_mask = mask_utils.encode(m)['counts'].decode("utf-8")
encoded = lzs.compressToEncodedURIComponent(source_mask)
r = {
"encodedMask": encoded,
"point_coord": ann['point_coords'][0],
}
res.append(r)
return res
# 就是将连续的数字统计个数,然后把[个数,数字]放到result中,类似rle算法
# 比如[[1,1,1,2,3,2,2,4,4],[3,3,4...]]
# result是[3,1, 1,2, 1,3, 2,2, 2,4, 2,3,...]
def my_compress(img):
result = []
last_pixel = img[0][0]
count = 0
for line in img:
for pixel in line:
if pixel == last_pixel:
count += 1
else:
result.append(count)
result.append(int(last_pixel))
last_pixel = pixel
count = 1
result.append(count)
result.append(int(last_pixel))
return result
3.原神启动
在cmd或者pycharm终端,cd到项目根目录下,输入uvicorn main:app --port 8006,启动服务器
三、前端代码
1.页面代码
template
<template>
<div class="segment-container">
<ElScrollbar class="tool-box">
<div class="image-section">
<div class="title">
<div style="padding-left:15px">
<el-icon><Picture /></el-icon><span style="font-size: 18px;font-weight: 550;">展示图像</span>
<el-icon class="header-icon"></el-icon>
</div>
</div>
<ElScrollbar height="350px">
<div v-if="cutOuts.length === 0">
<p>未进行抠图</p>
<p>左键设置区域为前景</p>
<p>右键设置区域为背景</p>
</div>
<img v-for="src in cutOuts" :src="src" alt="加载中"
@click="openInNewTab(src)"/>
</ElScrollbar>
</div>
<div class="options-section">
<span class="option" @click="reset">重置</span>
<span :class="'option'+(clicks.length===0?' disabled':'')" @click="undo">撤销</span>
<span :class="'option'+(clickHistory.length===0?' disabled':'')" @click="redo">恢复</span>
</div>
<button :class="'segmentation-button'+(lock||clicks.length===0?' disabled':'')"
@click="cutImage">分割</button>
<button :class="'segmentation-button'+(lock||isEverything?' disabled':'')"
@click="segmentEverything">分割所有</button>
</ElScrollbar>
<div class="segment-box">
<div class="segment-wrapper" :style="{'left': left + 'px'}">
<img v-show="path" id="segment-image" :src="url" :style="{width:w, height:h}" alt="加载失败" crossorigin="anonymous"
@mousedown="handleMouseDown" @mouseenter="canvasVisible = true"
@mouseout="() => {if (!this.clicks.length&&!this.isEverything) this.canvasVisible = false}"/>
<canvas v-show="path && canvasVisible" id="segment-canvas" :width="originalSize.w" :height="originalSize.h"></canvas>
<div id="point-box" :style="{width:w, height:h}"></div>
</div>
</div>
</div>
</template>
script
<script>
import throttle from "@/util/throttle";
import LZString from "lz-string";
import {
rleFrString,
decodeRleCounts,
decodeEverythingMask,
getUniqueColor,
cutOutImage,
cutOutImageWithMaskColor, cutOutImageWithCategory
} from "@/util/mask_utils";
import {ElCollapse, ElCollapseItem, ElScrollbar} from "element-plus";
import {Picture} from '@element-plus/icons-vue'
export default {
name: "segment",
components: {
ElCollapse, ElCollapseItem, ElScrollbar, Picture
},
data() {
return {
image: null,
clicks: [],
clickHistory: [],
originalSize: {w: 0, h: 0},
w: 0,
h: 0,
left: 0,
scale: 1,
url: null, // url用来设置成img的src展示
path: null, // path是该图片在文件系统中的绝对路径
loading: false,
lock: false,
canvasVisible: true,
// cutOuts: ['http://localhost:9000/p/2024/01/19/112ce48bd76e47c7900863a3a0147853.jpg', 'http://localhost:9000/p/2024/01/19/112ce48bd76e47c7900863a3a0147853.jpg'],
cutOuts: [],
isEverything: false
}
},
mounted() {
this.init()
},
methods: {
async init() {
this.loading = true
// 从路由获取id
let id = this.$route.params.id
if (!id) {
this.$message.error('未选择图片')
return
}
this.id = id
// 获取图片信息
try {
const { path, url } = await this.getPathAndUrl()
this.loadImage(path, url)
} catch (e) {
console.error(e)
this.$message.error(e)
}
},
async getPathAndUrl() {
let res = await this.$http.get("/photo/path/" + this.id)
console.log(res)
return res.data
},
loadImage(path, url) {
let image = new Image();
image.src = this.$photo_base + url;
image.onload = () => {
let w = image.width, h = image.height
let nw, nh
let body = document.querySelector('.segment-box')
let mw = body.clientWidth, mh = body.clientHeight
let ratio = w / h
if (ratio * mh > mw) {
nw = mw
nh = mw / ratio
} else {
nh = mh
nw = ratio * mh
}
this.originalSize = {w, h}
nw = parseInt(nw)
nh = parseInt(nh)
this.w = nw + 'px'
this.h = nh + 'px'
this.left = (mw - nw) / 2
this.scale = nw / w
this.url = this.$photo_base + url
this.path = path
console.log((this.scale > 1 ? '放大' : '缩小') + w + ' --> ' + nw)
const img = document.getElementById('segment-image')
img.addEventListener('contextmenu', e => e.preventDefault())
img.addEventListener('mousemove', throttle(this.handleMouseMove, 150))
const canvas = document.getElementById('segment-canvas')
canvas.style.transform = `scale(${this.scale})`
}
},
getClick(e) {
let click = {
x: e.offsetX,
y: e.offsetY,
}
const imageScale = this.scale
click.x /= imageScale;
click.y /= imageScale;
if(e.which === 3){ // 右键
click.clickType = 0
} else if(e.which === 1 || e.which === 0) { // 左键
click.clickType = 1
}
return click
},
handleMouseMove(e) {
if (this.isEverything) { // 分割所有模式,返回
return;
}
if (this.clicks.length !== 0) { // 选择了点
return;
}
if (this.lock) {
return;
}
this.lock = true;
let click = this.getClick(e);
requestIdleCallback(() => {
this.getMask([click])
})
},
handleMouseDown(e) {
e.preventDefault();
e.stopPropagation();
if (e.button === 1) {
return;
}
// 如果是“分割所有”模式,返回
if (this.isEverything) {
return;
}
if (this.lock) {
return;
}
this.lock = true
let click = this.getClick(e);
this.placePoint(e.offsetX, e.offsetY, click.clickType)
this.clicks.push(click);
requestIdleCallback(() => {
this.getMask()
})
},
placePoint(x, y, clickType) {
let box = document.getElementById('point-box')
let point = document.createElement('div')
point.className = 'segment-point' + (clickType ? '' : ' negative')
point.style = `position: absolute;
width: 10px;
height: 10px;
border-radius: 50%;
background-color: ${clickType?'#409EFF':'#F56C6C '};
left: ${x-5}px;
top: ${y-5}px`
// 点的id是在clicks数组中的下标索引
point.id = 'point-' + this.clicks.length
box.appendChild(point)
},
removePoint(i) {
const selector = 'point-' + i
let point = document.getElementById(selector)
if (point != null) {
point.remove()
}
},
getMask(clicks) {
// 如果clicks为空,则是mouse move产生的click
if (clicks == null) {
clicks = this.clicks
}
const data = {
path: this.path,
clicks: clicks
}
console.log(data)
this.$http.post('http://localhost:8006/segment', data, {
headers: {
"Content-Type": "application/json"
}
}).then(res => {
const shape = res.shape
const maskenc = LZString.decompressFromEncodedURIComponent(res.mask);
const decoded = rleFrString(maskenc)
this.drawCanvas(shape, decodeRleCounts(shape, decoded))
this.lock = false
}).catch(err => {
console.error(err)
this.$message.error("生成失败")
this.lock = false
})
},
segmentEverything() {
if (this.isEverything) { // 上一次刚点过了
return;
}
if (this.lock) {
return;
}
this.lock = true
this.reset()
this.isEverything = true
this.canvasVisible = true
this.$http.get("http://localhost:8006/everything?path=" + this.path).then(res => {
const shape = res.shape
const counts = res.mask
this.drawEverythingCanvas(shape, decodeEverythingMask(shape, counts))
}).catch(err => {
console.error(err)
this.$message.error("生成失败")
})
},
drawCanvas(shape, arr) {
let height = shape[0],
width = shape[1]
console.log("height: ", height, " width: ", width)
let canvas = document.getElementById('segment-canvas'),
canvasCtx = canvas.getContext("2d"),
imgData = canvasCtx.getImageData(0, 0, width, height),
pixelData = imgData.data
let i = 0
for(let x = 0; x < width; x++){
for(let y = 0; y < height; y++){
if (arr[i++] === 0) { // 如果是0,是背景,遮住
pixelData[0 + (width * y + x) * 4] = 40;
pixelData[1 + (width * y + x) * 4] = 40;
pixelData[2 + (width * y + x) * 4] = 40;
pixelData[3 + (width * y + x) * 4] = 190;
} else {
pixelData[3 + (width * y + x) * 4] = 0;
}
}
}
canvasCtx.putImageData(imgData, 0, 0)
},
drawEverythingCanvas(shape, arr) {
const height = shape[0],
width = shape[1]
console.log("height: ", height, " width: ", width)
let canvas = document.getElementById('segment-canvas'),
canvasCtx = canvas.getContext("2d"),
imgData = canvasCtx.getImageData(0, 0, width, height),
pixelData = imgData.data;
const colorMap = {}
let i = 0
for(let y = 0; y < height; y++){
for(let x = 0; x < width; x++){
const category = arr[i++]
const color = getUniqueColor(category, colorMap)
pixelData[0 + (width * y + x) * 4] = color.r;
pixelData[1 + (width * y + x) * 4] = color.g;
pixelData[2 + (width * y + x) * 4] = color.b;
pixelData[3 + (width * y + x) * 4] = 150;
}
}
// 显示在图片上
canvasCtx.putImageData(imgData, 0, 0)
// 开始分割每一个mask的图片
const image = document.getElementById('segment-image')
Object.keys(colorMap).forEach(category => {
cutOutImageWithCategory(this.originalSize, image, arr, category, blob => {
const url = URL.createObjectURL(blob);
this.cutOuts = [url, ...this.cutOuts]
})
})
},
reset() {
for (let i = 0; i < this.clicks.length; i++) {
this.removePoint(i)
}
this.clicks = []
this.clickHistory = []
this.isEverything = false
this.clearCanvas()
},
undo() {
if (this.clicks.length === 0)
return
const idx = this.clicks.length - 1
const click = this.clicks[idx]
this.clickHistory.push(click)
this.clicks.splice(idx, 1)
this.removePoint(idx)
if (this.clicks.length) {
this.getMask()
} else {
this.clearCanvas()
}
},
redo() {
if (this.clickHistory.length === 0)
return
const idx = this.clickHistory.length - 1
const click = this.clickHistory[idx]
console.log(this.clicks, this.clickHistory, click)
this.placePoint(click.x * this.scale, click.y * this.scale, click.clickType)
this.clicks.push(click)
this.clickHistory.splice(idx, 1)
this.getMask()
},
clearCanvas() {
let canvas = document.getElementById('segment-canvas')
canvas.getContext('2d').clearRect(0, 0, canvas.width, canvas.height)
},
cutImage() {
if (this.lock || this.clicks.length === 0) {
return;
}
const canvas = document.getElementById('segment-canvas'),
image = document.getElementById('segment-image')
const {w, h} = this.originalSize
cutOutImage(this.originalSize, image, canvas, blob => {
const url = URL.createObjectURL(blob);
this.cutOuts = [url, ...this.cutOuts]
// 不需要之后用下面的清除文件
// URL.revokeObjectURL(url);
})
},
openInNewTab(src) {
window.open(src, '_blank')
}
}
}
</script>
style
<style scoped lang="scss">
.segment-container {
position: relative;
}
.tool-box {
position: absolute;
left: 20px;
top: 20px;
width: 200px;
height: 600px;
border-radius: 20px;
//background: pink;
overflow: auto;
box-shadow: 0 0 5px rgb(150, 150, 150);
box-sizing: border-box;
padding: 10px;
.image-section {
height: fit-content;
width: 100%;
.title {
height: 48px;
line-height: 48px;
border-bottom: 1px solid lightgray;
margin-bottom: 15px;
}
}
.image-section img {
max-width: 85%;
max-height: 140px;
margin: 10px auto;
padding: 10px;
box-sizing: border-box;
object-fit: contain;
display: block;
transition: .3s;
cursor: pointer;
}
.image-section img:hover {
background: rgba(0, 30, 160, 0.3);
}
.image-section p {
text-align: center;
}
.options-section {
margin-top: 5px;
display: flex;
justify-content: space-between;
align-items: center;
padding: 10px;
box-sizing: border-box;
border: 3px solid lightgray;
border-radius: 20px;
}
.options-section:hover {
border: 3px solid #59ACFF;
}
.option {
font-size: 15px;
padding: 5px 10px;
cursor: pointer;
}
.option:hover {
color: #59ACFF;
}
.option.disabled {
color: gray;
cursor: not-allowed;
}
.segmentation-button {
margin-top: 5px;
width: 100%;
height: 40px;
background-color: white;
color: rgb(40, 40, 40);
font-size: 17px;
cursor: pointer;
border: 3px solid lightgray;
border-radius: 20px;
}
.segmentation-button:hover {
border: 3px solid #59ACFF;
}
.segmentation-button.disabled {
color: lightgray;
cursor: not-allowed;
}
}
.segment-box {
position: relative;
margin-left: calc(220px);
width: calc(100% - 220px);
height: calc(100vh - 80px);
//background: #42b983;
.segment-wrapper {
position: absolute;
left: 0;
top: 0;
}
#segment-canvas {
position: absolute;
left: 0;
top: 0;
pointer-events: none;
transform-origin: left top;
z-index: 1;
}
#point-box {
position: absolute;
left: 0;
top: 0;
z-index: 2;
pointer-events: none;
}
.segment-point {
position: absolute;
width: 10px;
height: 10px;
border-radius: 50%;
background-color: #409EFF;
}
.segment-point.negative {
background-color: #F56C6C;
}
}
</style>
2.代码说明
- 本项目没做上传图片分割,就是简单的选择本地图片分割,data中url是img的src,path是绝对路径用来传给python后端进行分割,我是从我项目的系统获取的,请自行修改代码成你的图片路径,如src: “/assets/test.jpg”, path:“D:/project/segment/assets/test.jpg”
- 由于pycocotools的rle encode是从上到下进行统计连续的0和1,为了方便,我在【@/util/mask_utils.js:decodeRleCounts】解码Click点选产生的mask时将(H,W)的矩阵转成了(W,H)顺序存储的Uint8array;而在Everything分割所有时,我没有使用pycocotools的encode,而是main.py中的my_compress函数编码的,是从左到右进行压缩,因此矩阵解码后仍然是(H,W)的矩阵,所以在drawCanvas和drawEverythingCanvas中的二层循环xy的顺序不一样,我实在懒得改了,就这样就可以了。
关于上面所提rle,可以在项目根目录/notebooks/predictor_example.ipynb中产生mask的位置添加代码自行观察他编码的rle,他只支持矩阵元素为0或1,result的第一个位置是0的个数,不管矩阵是不是0开头。
-
[0,0,1,1,0,1,0]
,rle counts是[2(两个0), 2(两个1), 1(一个0), 1(一个1), 1(一个0)]; -
[1,1,1,1,1,0]
,rle counts是[0(零个0),5(五个1),1(一个0)]
def decode_rle(rle_string): # 这是将pycocotools的counts编码的字符串转成counts数组,而非转成原矩阵
result = []
char_index = 0
while char_index < len(rle_string):
value = 0
k = 0
more = 1
while more:
c = ord(rle_string[char_index]) - 48
value |= (c & 0x1f) << (5 * k)
more = c & 0x20
char_index += 1
k += 1
if not more and c & 0x10:
value |= -1 << (5 * k)
if len(result) > 2:
value += result[-2]
result.append(value)
return result
from pycocotools import mask as mask_utils
import numpy as np
mask = np.array([[1,1,0,1,1,0],[1,1,1,1,1,1],[0,1,1,1,0,0],[1,1,1,1,1,1]])
mask = np.asfortranarray(mask, dtype=np.uint8)
print("原mask:\n{}".format(mask))
res = mask_utils.encode(mask)
print("encode:{}".format(res))
print("rle counts:{}".format(decode_rle(res["counts"].decode("utf-8"))))
# 转置后好看
print("转置:{}".format(mask.transpose()))
# flatten后更好看
print("flatten:{}".format(mask.transpose().flatten()))
#numpy_array = np.frombuffer(res["counts"], dtype=np.uint8)
# 打印numpy数组作为uint8array的格式
#print("Uint8Array([" + ", ".join(map(str, numpy_array)) + "])")
输出: