多维时序 | MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测
多维时序 | MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测
目录
- 多维时序 | MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测;
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,多变量时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、MSE、RMSE、RPD多指标评价;
程序设计
- 完整源码和数据获取方式私信博主回复MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测 。
% 训练集和测试集划分
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 100, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.01, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod',70, ... % 训练100次后开始调整学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
'L2Regularization', 0.001, ... % 正则化参数
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 1, ... % 关闭优化过程
'Plots', 'none'); % 画出曲线
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501